Interaction Design WikiData Literacy and Visualisation

Interactive Visualization HS 2017

Module Overview

The module takes place over 5 weeks, including a reading week (3), from Tuesday to Friday, 9.30 – 17.00, November 02 – December 01 2017. Class sessions include lectures, discussions, mentoring, in-class exercises, project assignments and independent study blocks. Project assignments are conducted in 5 groups of 3 students.

Module Details

Module Theme

The theme of this module is aligned with the overall theme of the fall semester 2017: instability. We interpret the term instability in the context of this course as an antonym to stability and the students are asked to look for stability, instability, or the dynamic between these two terms in data sets covering the world around us. Tectonic instability leading to earthquakes, job instability leading to fluctuating jobless rates, economic instability leading to financial crises, political instability leading to democratic overhaul, are just some of the potential examples.

Module Instructors

Joël Gähwiler
joel.gaehwiler@zhdk.ch
Data visualization tools and technology

Benjamin Wiederkehr
benjamin@interactivethings.com
+41 76 533 33 72
Data analysis, visualization, interaction, narration, communication, and evaluation

Timo Grossenbacher
timo@timogrossenbacher.ch
Data sources and data quality, data acquisition, formatting and converting data.

Module Sessions

Input Lectures
Presentations will introduce the students to the essential theory and practice of data literacy and data visualization. These lectures will be divided into design- and technology-oriented inputs. Joël Gähwiler will provide the technology inputs, Benjamin Wiederkehr will provide the design inputs.

Group Mentoring
Individual review and coaching sessions where the instructors give advice to groups of students.

Subject and Objectives

Subject Overview

Many aspects of society, science, business, finance, journalism, and everyday human activity, become ever more quantified. As a result, our world is awash with data of increasing amount and complexity. Still, we must keep afloat with our innate human abilities and limitations. For designers in this environment, working confidently with data becomes an essential skill. Visualization is one way to tame this information overload: well-designed representations replace difficult cognitive calculations with simpler perceptual interpretations. They can thus improve accessibility, comprehension, and memory. More literally, visualization is the process of transforming data into visuals like charts, graphs, and maps. These are then used to explore, evaluate and explain insights hidden in the data. The goal being to engage and aid diverse audiences in analytical sense and decision making.

Student Objectives

This course provides students with an introduction into the theory and practice of designing with data while keeping the human in mind. They learn the basics for creating effective data visualizations. This includes principles from graphic design, human-computer interaction, perceptual psychology, cognitive science, and statistics. We touch on the topics of data literacy, visual perception, graphical encoding, visualization types, color, interaction, animation, exploration, and explanation. In a practical assignment, students apply the techniques, tools, and technologies to design and develop interactive visualizations. After this course, students will be able to turn a data source into a useful, truthful, and beautiful data experience — tailored to specific information needs or communication goals.

Module Outline

The module is split into three parts:

Week 1: Data Literacy
Students learn the basics of data acquisition, formatting, and data conversions. They get to know a wide variety of data sources.

Week 2: Reading Week
Students conduct personal research, read articles, watch videos, and listen to podcasts relevant to the topic of data visualization.

Week 3 – 5: Data Visualization
Students learn and apply the basics of data visualization within a group assignment to build their own interactive visualization.

Assignment

The students collaborate in groups of three people. We recommend to form cross-functional groups where technically-oriented people team up with design-oriented people. We propose the following process to achieve the expected results in time.
  1. In the first phase, the discovery phase, the students explore indicators of instability in the world around us. Such indicators can be found in economics, politics, or finances, but also in social diversity or climate phenomena. The students will research data sets which hold the potential to describe or even explain this instability.
  2. In the second phase, the definition phase, the students will conduct a visual analysis of the selected data sets to find their key insight. This can include visualizing different facets of a data set, visualizing a data set with different graphical methods, or putting different data sets in relation to each other. The students will define a question which they can answer using the right data set and the right visualization technique.
  3. In the third phase, the development phase, the students design and develop their visualization into a final visual artifact. This is either a graphical poster (minimum requirement) or an interactive prototype (advanced requirement). Depending on the student composition and the intended reader / user experience, the priority between these two artifacts can be defined for each group individually.
  4. In the fourth phase, the delivery phase, the students will exhibit and present their work to the rest of the class. Besides the final result, we’re interested in the overall development process from interest to question to answer. These stages should be documented as a visual journal including sketches, mockups, and prototypes.

Deliverables

Graphical Poster

We expect all groups to deliver and present at least a static data visualization of an appropriately sized data set which is relevant to the overarching topic of instability. The visualization should make the data set accessible to people not familiar with the subject matter and highlight important aspects like trends, patterns, or outliers. The poster should include, but is not limited to, the following content: Title, subtitle, introduction, visualization with scales, legends, and annotations, as well as methodology, sources, credits. Format: A3 Portrait

Interactive Prototype

More advanced groups are asked to deliver a prototype of an interactive version of the visualization represented on the poster. The prototype should illustrate the intended functionality in terms of interaction and animation. The prototype can be built using any of, but not limited to, the following tools and technologies: InVision, Principle, Adobe After Effects, Adobe Animate, HTML, CSS, JS, etc. Format: Clickable Prototype

Documentation

The documentation should include:

Grading

Grades will be based on group presentations, class participation, home assignments, documentation (journal) and final work. Contributing to constructive group feedback is an essential aspect of class participation. Regular attendance is required. Two or more unexcused absences will affect the final grade. Arriving late on more than one occasion will also affect the grade.

Any assignment that remains unfulfilled receives a failing grade.

Calendar

Week 1

Tuesday 31.10

Wednesday 1.11

Thursday 2.11

Friday 3.11




Data Literacy
09.30-17.00

4.D12, TG

Introduction

From Data to Knowledge

Data Sources

Please bring your own laptop to the course!

Data Literacy
09.30-17.00
4.D12, TG

Data Sources & Quality

Data Types / Formats

Data Tools / Working with Data



Week 2

Tuesday 7.11

Wednesday 8.11

Thursday 9.11

Friday 10.11


Data Literacy
09.30-17.00

4.D12, TG

Data Quality

More Data Tools

Geospatial Data

tbd.

Data Visualization
Introduction & Briefing

09.00-12.0
4.D12, BW, JG

Topic and Data Research

Design Input 1
Basic Techniques

09.00-12.00
4.D12, BW

Topic and Data Research

Tech Input I

09.00-12.00
4.D12, JG

Mentoring
13.00-15.00
Atelier, BW, JG

Topic and Data Research

Week 3

Tuesday 14.11

Wednesday 15.11

Thursday 16.11

Friday 17.11

B&A

Data Analysis

Data Analysis

Ideation and Concept

Ideation and Concept

Week 4

Tuesday 21.11

Wednesday 22.11

Thursday 23.11

Friday 24.11

B&A

Design Input 2
Intermediary Techniques

09.00-12.00
4.D12, BW

Mentoring
13.00-15.00
Atelier, BW, JG

Concept

Tech Input 2

09.00-12.00
4.D12, JG

Concept Finalization

Aesthetics of Interaction
09.00 - 12.00

Production

Mentoring
09.00-12.00
Atelier, BW, JG

Production

Week 5

Tuesday 28.11

Wednesday 29.11

Thursday 30.11

Friday 1.12

B&A

Production

Aesthetics of Interaction
09.00 - 12.00

Mentoring
13.00-17.00
Atelier, BW, JG

Production

Production

Presentation
09.00-12.00

4.D12, BW, JG

Documentation


TG: Timo Grossenbacher, BW: Benjamin Wiederkehr, JG: Joël Gähwiler

Inputs

InputDateContentInstructorSlides
Introduction & Briefing8.11

Data Visualization Foundation

  • Purpose
  • History
  • State of the Art
  • Future Frontiers

Briefing

  • Theme
  • Approach
  • Deliverables
  • Schedule
  • Data Sources
  • Materials
BW

Interactive Visualization — Data Visualization Foundation — Benjamin Wiederkehr (2017).pdf

Design Input 19.11

Basic Techniques

  • Data Properties
  • Human Properties
  • Graphical Encoding
  • Graphical Methods
BW
Design Input 221.11

Intermediary Techniques

  • Color
  • Interaction
  • Animation
  • Exploration
  • Explanation
BWInteractive Visualization — Intermediary Techniques — Benjamin Wiederkehr (2017).pdf
Technology Input 110.11
  • Online Tools (Plotly)
  • Data In & Out
  • Export => Illustrator
JG
Technology Input 222.11
  • Programmatic Analysis
  • Programmatic Transformation
JG

TG: Timo Grossenbacher, BW: Benjamin Wiederkehr, JG: Joël Gähwiler