When we talk about "transistors", we usually mean a bipolar transistor. Transistors consist of semiconductors, which means they can transition from conducting to non-conducting. These properties can be used as a kind of electrically activated "switch". This makes it possible to switch larger loads with small ones. This can be really useful, for example, if a larger relay, motor or lightbulb needs to be switched with an Arduino board.
You can imagine the transistor like a switch. When the switch is pressed, the current flows. If the switch is released, the current no longer flows. The transistor has three connections: Base, Emitter and Collector. The voltage at the base-emitter switches the collector-emitter path. The circuit of a transistor depends on its type. There are two main types of transistors: NPN and PNP transistors. The current direction (collector-emitter) must be observed, otherwise, the transistor could be damaged. We will use NPN transistor most of the time.
Here is a drawing from the Datasheet of the TIP 122, which shows where base, emitter and collector pins can be found
The following diagram visualizes the current flow (I/red) and the voltage flow (U/blue) which are applied to the transistor. Important: A base resistor (RB) and a load are always required for correct operation.
UCE = Collektor-Emitter-Voltage
UE = Driving Voltage
UBE = Base-Emitter-Voltaege (Threshold value)
IC = Collector Current
IB = Base current
RB = Base resistor
A common use of a transistor is in the switching of higher loads - since most microcontrollers are limited in their output power on digital pins. For example, the Arduino can switch a load of 5V at 20mA per output. This is enough for LED's and maybe a small vibration motor. However, if a fan, a high power LED, a solenoid, a motor, etc. is connected you definitely need a transistor circuit. In this case, the transistor works similar to a relay: it switches higher loads with smaller loads. A distinction must also be made between switching non-inductive loads (e.g. LED) and inductive loads (e.g. fan, relay, motor). An inductive load will probably need a Fly Back Diode.
For switching a non-inductive load, the transistor circuit is very simple to set up. You only need an NPN transistor (TIP 122) and a series resistor in the path IB (1 kOhm). The circuit diagram looks as follows:
R1 = 1 kOhm (approximate value)
Transistor = TIP 122
In this example, we want to light up the RGB LED strip and control its brightness. According to the labelling and datasheet, the strip needs 12V supply voltage - corresponding resistors are already present and soldered on the strip. To realize this circuit we need a 12V power supply, one transistor (TIP 122 NPN) per channel, one resistor (1kOhm) per channel and the Arduino.
The following setup is needed to control a single color (here red)...
We program the Arduino with the following example code, which fades the red channel back and forth.
Make Presents: The Transistor
Bipolarer Transistor
Der Transistor als Schalter