

Physical computing: sensing and controlling the physical world with computers

Dan O'Sullivan and Tom Igoe

Breadboard

	-				-											-
9 Volt		Resistor		Tactile	(000	0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0	00	0
Battery				Switch	(000	0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0	00	0
					+ -											-+
' '		Д	u <i>u</i>		· - ·	000	0 0 0	0 0	0 0 0	0 0 0	0 0 0	$\circ \circ \circ$	0 0 0	000	0 0	○ ·¬
		\ominus			· (000	0 0 0	0 0	0 0 0	0 0 0	0 0 0	$\circ \circ \circ$	0 0 0	000	00	ਾ
					_ ਸ (0 0 C	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	00	਼ੁਰ
	_ U				<u>م</u>	000	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	രം
	+ U				ч	000	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	000	000	0 0	0 ч
		U														
					e e	000	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	്
					ס	000	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	ס ס
					0	000	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	ပ
					A	000	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	୦ ନ
Battery		\bigcirc	Jumpers	5	ъ р	000	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	000	0 0	o a
Clip				I												— I
					(0 0 C	0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0	0
				I	(000	0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0	•
11	-				+-											- +

Exercise 1: Electricity

Using the materials shown, create a circuit with an LED can be switched on and off.

	1					ŀ						È.	1		•	•	•	1	0										
	_		<u> </u>	_	<u> </u>		_			_		<u> </u>	_	_	_	-	•	_				_		-	_	_		_	
	-				ю					9					12				20					25					30
2	•	•	٠	•	•	٠	•	•	٠	•	•	٠	٠	•	•	• •	. •		٠	•	•	٠	٠	•	•	•	Ŧ	٠	•
-	۰	٠	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	۰	۰	•	• •	•	۰	۰	٠	۰	۰	۰	•	٠	۰	۰	۰	•
-	۰	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	٠	۰	۰	•	• •	•	٠	۰	۰	۰	۰	٠	•	۰	٠	۰	۰	۰
5	۰	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	٠	۰	۰	•	• 4	•	۰	۰	۰	۰	۰	٠	•	٠	٠	۰	۰	۰
-	۰	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	۰	۰	۰	•	• •	•	۰	۰	۰	۰	۰	۰	•	٠	۰	۰	۰	•
	_																						_		_	_			
	÷.	1	Ξ.	÷.	÷.	Ţ.	2	Ţ,	1	2	÷.	Ţ,	2	Ξ.	1				1	1	2	Ξ.	Ţ.	Ξ.	1	÷.	Ľ.	Ξ.	
1	÷.	1	Ξ.	÷	÷	÷.	1	÷.			÷	÷.	1								1	Ξ.	÷.	Ξ.	÷	÷.	÷.	Ξ.	
	ž.		Ξ.	÷.	÷.	ž.		÷.			÷.	÷.		÷.	÷.,						÷.	Ξ.	÷.	Ξ.	÷.	÷.	÷	Ξ.	
	ž.	Ξ.	Ξ.	÷.	÷.	ī.	Ξ.	ī.		÷.	÷.	÷.	Ξ.	Ξ.	Ξ.				1		÷.	Ξ.	÷.	Ξ.	÷.	ž.	ī.	Ξ.	
																			1			Ξ.	Τ.		۰.	•			
	-				LQ.					Ę					-				ñ					ã					э

Bread Board

- Electricity is the interaction and movement of positive and negativity charged sub atomic particles.
- Negatively charged **Electrons** are attracted to positively charged **Protons** (electromagnetic force)
- Protons are strongly held in the nucleus of an atom, but electrons are more mobile.

Atoms and Electromagnetic force

- The attraction (and repulsion) between subatomic particles can cause electrons to flow though conductive materials to reach positively charged atoms.
- The difference in charge left to right in this diagram can be measured in **volts.** The amount of electrons flowing can be measured in **amp** and the resistance to flow from the atoms can be measured in **ohms.**

Electricity

Water Analogy

UNITS: Volt

(mili) mV	V	(kilo) kV
1000	1	0.001

Volts are measure of difference in electrical charge between two points. Voltage can exists in a system even if there is no circuit, as it refers to **potential difference.**

Power Supply Symbol

When current passes through a component, there is a **voltage drop.**

Voltage (volts)

UNITS: Amps

(micro) µA	(Mili) mA	A
10000	1000	1

Current is the amount of electrons moving through material per unit of time (flow). A circuit needs to be closed before electrons can flow, so we can only observe current in a working circuit.

In a simple circuit, same amount of current will be moving through every point (and every component).

Water Analogy: Flow

UNITS: ohms (Ω)

Ω	(kilo) kΩ	(mega) mΩ
1	0.001	0.000001

Resistance is the measure of restriction in a material to the flow of electrons.

All electronic components (including wires and batteries) have a resistance. However we mostly control this explicitly with a component called a resistor. Less resistance

More resistance

_ _ _ _ _ _ _ _ _

Symbol

Water Analogy: Restriction of Flow

Resistance (ohms)

UNITS: Watt

(mili) mW	W	(Kilo) kW
1000	1	0.001

Watts are measure of power (or energy transfer)

Watts can be found by multiplying the current and the voltage in a circuit Water Analogy: The power of the water flow to move a load is both the pressure, and the rate of flow. Note how the restriction, here would limit the rate of flow even if it is after the water wheel!

Watts = V (volts) x I (amps)

There is an intrinsic relationship between voltage, current and resistance, expressed as ohms Law. We can use this formula to deduct the values in many situations

In a series circuit, the same current runs through all wires and components. Voltage can vary, depending on where we measure it in the circuit.

Breadboard

9 Volt Battery 	Tactile Switch 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		f g h j f g h j f j j j
Battery Clip	۵ ۲ ۵ ۵ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹ ۲ ۰ ۹	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e 0

Exercise 1.2: Electricity

Add **another LED** to your circuit, that can be controlled by it's **own button**.

In a parallel circuit, the total current is the sum of each circuit.

Nikola Tesla

- Direct current is easier to store (batteries and capacitors)
- DC is required for many components and devices (LEDs, Computers, Sensors)
- DC is easy to work with in low voltage applications

- Alternating current can be easily converted up or down in voltage
- Higher voltages can be transmitted with less energy loss over long distances, and easily converted down
- Many energy sources output AC
- Some devices can be driven directly by AC (motors, refrigerators, traditional lightbulbs)

Never use power direct from the socket! 220 v * 10 amps = 2200 watts!

Hazards: AC vs DC

