

Zürcher Hochschule der Künste Bachelor of Arts in Design

Bits & Atoms Computer Aided Design

3rd Semester | 27th of September 2018

Florian Wille

Overview **Bits & Atoms: Computer Aided Design**

Rhino Basics

04.10.2018

•

. .

11.10.2018

•

Rhino to Grasshopper

Parametric **Design with** Grasshopper

Overview Bits & Atoms: Computer Aided Design

Rhino Basics

Rhino to Grasshopper

Parametric Design with Grasshopper

Install Rhino 3D

Rhino 3D

Rhino 3D Interface - Editing

Rhino 3D Interface - Editing

Rhino 3D Interface - Editing

Rhino 3D **Interface - Layers**

Creating and Editing Geometry

Rhino 3D Nurbs vs. Polygons

Rhino 3D Nurbs vs. Polygons

EXERCISE01

Create and Edit 2D Geometry

EXERCISE01 2D & 3D Creation and Editing

create & edit 2D:

_line, _circle, _curve, _arc _move / _mirror / _trim / _extend _EditPtOn

Use Osnap / Objektfang Use Gridsnap / Rasterfang

create & edit 3D:

_ExtrudeCrv

EXERCISE02 **Circles and Arcs**

Arc: Start, End, Direction

R2.00-

create & edit 2D:

_line, _circle, _curve, _arc _move / _mirror / _trim / _extend _EditPtOn

Arc: Center, Start, End-

Use Osnap / Objektfang Use Gridsnap / Rasterfang

create & edit 3D:

_ExtrudeCrv

EXERCISE03 Modelling with Gumball

Gumball Commands:

move: arrow handles
scale: square handles
rotate: circle segment handles
extrude: click arrow handle > drag > press command&shift
select subsurface: command&shift + selecting surface or edge

EXERCISE03 Create Solids

EXERCISE03 **Edit Solids**

- Boolean difference Solean intersection Boolean split
- Boolean 2 objects
- Create solid
- Shell polysurface
- G Cap planar holes
- Sextract surface
- Merge two coplanar faces
- Merge all coplanar faces
- 🔩 Unjoin edge
- Variable radius fillet
- Variable radius blend
- Variable radius chamfer
- SWire cut
- Move face
- Move untrimmed face
- Move face to a boundary
- **G** Extrude face
- **G** Extrude face along path
- Extrude face to a boundary
- Solid points on
- 🗭 Move Edge
- Hove untrimmed edge
- Split planar face
- Sold planar faces
- Round hole
- 🛐 Make hole
- Place hole
- Revolved hole
- Move hole
- Copy hole
- Rotate hole
- Array hole polar
- 🚟 Array hole
- 💐 Delete hole

EXERCISE04 CV Curve Creation and Editing

_curve _move / _mirror / _trim / _extend

_EditPtOn

Use Osnap / Objektfang Use Gridsnap / Rasterfang

Use gumball to to edit and move points

EXERCISE04 CV Curve Creation and Editing

_curve _move / _mirror / _trim / _extend _EditPtOn

Use Osnap / Objektfang Use Gridsnap / Rasterfang

Use gumball to to edit and move points

EXERCISE03 Create Surfaces - Loft

EXERCISE03 Create Surfaces - Loft

Loft > straight sections

Overview **Bits & Atoms: Computer Aided Design**

Rhino Basics

Rhino to Grasshopper

Parametric **Design** with Grasshopper

Overview Grasshopper

Grasshopper is a visual programming language and environment developed by David Rutten at Robert McNeel & Associates, that runs within the Rhinoceros 3D computer-aided design (CAD) application. The first version of Grasshopper was released in September 2007, and titled Explicit History. Grasshopper has become part of the standard Rhino toolset in Rhino 6.0 and later.

Grasshopper

- Grasshopper is primarily used to build generative algorithms, such as for generative art. Many of Grasshopper's components create 3D geometry.
 Advanced uses of Grasshopper include parametric
- Advanced uses of Grasshopper include parametric modelling for structural engineering, parametric modelling for architecture and fabrication, lighting performance analysis for eco-friendly architecture and building energy consumption.

							Grasshop
Params	Maths	Sets	Vector	Curve	Surface	Mesh	Intersect
		Geomet	0) (2 v			7	
	10	0%					
Either double or open	drag a ne click the 1 an existi	w comp canvas ing doci	oonent on to create ument via	to the car a new co the ment	ivas, mponent u or the tile	es.	

Component Panels (Container System)

							Grasshopp
Param	s Maths	Sets	Vector	Curve	Surface	Mesh	Intersect
		6	0 7		0	0	d a i
		Geometr	У		+	Primitiv	e +
	Point	Geometr		Vecto	or		
0	Circle		5	Circu	lar Arc		
0	Curve		ē	Line			
ē	Plane		$\overline{\otimes}$	Recta	ingle		
Ø	Box			Brep			
83	Mesh		P	Mesh	Face		
Ō	Surface		ø	Twist	ed Box		
Ø	Field		0	Geom	netry		
	Geometr	y Cach	ie 🔂	Geom	netry		
3	Group		6	Trans	form		

Component Panels (Container System)

Component Panels (Container System)

and you will see a list of parameters or components that match your request.

							Grassho	pp
Params	Maths	Sets	Vector	Curve	Surface	Mesh	Intersect	Т
		Geome	O Z		 <	7 Primitiv	D1) (A) e +	
	 10	0%						
Either double or open	drag a ne click the 1 an existi	w comp canvas ing doc	oonent on to create ument via	to the car a new co the men	ivas, mponent u or the tile	<i>25</i> .		
Enter a search k						eyword		

You can also find components by name, by double-clicking anywhere on the canvas; launching a pop-up search box. Type in the name of the component you are looking for

Component Panels (Container System)

components are then connected to the inputs of subsequent components.

- The program gets created by dragging components onto a canvas. The outputs to these

Overview Component Panels (Container System)

Component Panels (Container System)

<u>Parameters</u> contain data, meaning that they <u>store</u> stuff. <u>Components</u> contain actions, meaning that they <u>do</u> stuff.

Component Panels (Container System)

When you hover your mouse over the individual parts of a Component object, you'll see different tooltips that indicate the particular type of the (sub)object currently under the mouse. Tooltips are quite informative since they tell you both the type and the data of individual parameters:

Div. C (Curve)
Curve to divide
Local Curve list (1 values) Referenced Curve
Div. N (Integer)
Number of segments
Local Integer list (1 values) 10
Div.K (Boolean)
Split segments at kinks
Local Boolean list (1 values)

Component Panels (Container System)

All objects on the Canvas have their own context menus that expose most of the features for that particular component.

Right click on the Parameter or Component indicates those features:

The space button shows the same features in symbols:

(Pt		
	John Dake	
	🤤 Runtime warnings 🛛 🕨	
	Wire Display	
	Reverse	
	Flatten	
	Graft	
	Simplify	
	Expression	
	Set one Point	
	Set Multiple Points	
	Manage Point collection	
	Clear values	
	Internalise data	
	Extract parameter	
	Help	

45

46

48

49

50

Overview **Bits & Atoms: Computer Aided Design**

Rhino Basics

. .

11.10.2018

•

Rhino to Grasshopper

Parametric **Design with** Grasshopper

- In Rhino: create a **Point** and a **CV Curve** and connect them to Grasshopper
- In Grasshopper: create a grid "RecGrid" using the Point as a Base point, Sliders to control the extend and size of the grid
- Create Circles using the Grids Points (P) as center an the a division of the Cell size as radius (R)

53

- We want to find out how the distance between each circle and the attractor curve is. We use the Curve Closest Point (Crv CP) to achieve that.
- We can then use the resulting Distance (D) to drive the scale and extrusion height of the circles

54

 Remap allows us to take a range of numeric values and remap them to a new range

 Bounds allows us to find the minimum and maximum in a list of values

• Bounds allows us to find the minimum and maximum in a list of values. This range can be used to drive the source domain (S) for the remapping function

• The target domain can be constructed with number sliders to allow more control

Remapping does not work right away, as the distance values are "tree structured"

59

60

 Using the scale function, we can now scale each circle in accordance to its distance to the attractor line. Use the circle as geometry and center input for the scale function. Use the remapped distance values as a scale factor.

- Adjust the scale domain to achieve a satisfying result
- The scaled circles can now be extruded. You need to define a extrusion direction. To extrude upwards us a **z-vector** and feed that with a value to determine the extrusion height

62

63

64

• Create an attractor (point) in Rhino and connect it to grasshopper. In this example I grouped the point with a sphere so it is easier to find and move around

66

- Create circles (circle CNR) on the gridpoints
- Create lines from grid points to attractor
- Use the line as normal line for the Circles CNR
- Use a part (division) of the cell size (extend) to determine the size of the circle

67

68

69

Ressources

Digitaltoolbox.info

<u>
 Rhino 5 Level 1 Training Guide and Models
</u>

Download Rhino 5 WIP

Thank you

Kontakt **Florian Wille** florian.wille@zhdk.ch

Ζ

Zürcher Hochschule der Künste Bachelor of Arts in Design

