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In both the popular press and scholarly research, dig-
ital information is persistently discussed in terms that
imply its immateriality. In this characterization, the digital
derives its power from its nature as a mere collection of
0s and 1s wholly independent from the particular media
on which it is stored—hard drive, network wires, opti-
cal disk, etc.—and the particular signal carrier which
encodes bits—variations of magnetic field, voltages, or
pulses of light. This purported immateriality endows bits
with considerable advantages: they are immune from the
economics and logistics of analog media, and from
the corruption, degradation, and decay that necessarily
result from the handling of material carriers of informa-
tion, resulting in a worldwide shift “from atom to bits”
as captured by Negroponte.This is problematic: however
immaterial it might appear, information cannot exist out-
side of given instantiations in material forms. But what
might it mean to talk of bits as material objects? In this
paper I argue that bits cannot escape the material con-
straints of the physical devices that manipulate, store,
and exchange them. Such an analysis reveals a surpris-
ing picture of computing as a material process through
and through.

Introduction

By some accounts, the digital age fundamentally differs
from all previous information epochs insofar as information
has finally achieved what it has aspired to throughout history,
namely, unburdened itself from the shackles of matter. As a
mere collection of 0s and 1s, digital information is indepen-
dent of the particular media onwhich it is stored—hard drive,
optical disk, etc.—and the particular signal carrier which
encode bits, whether magnetic polarities, voltage intensities,
or pulses of light.
This purported independence frommatter would have two

distinct and important consequences: (a) digital information
can be reproduced and distributed at negligible cost and high
speed, and thus, is immune to the economics and logistics of
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analog media; (b) digital information can be accessed, used,
or reproduced without the noise, corruption, and degradation
that necessarily results from the handling of material carri-
ers of information. Immateriality, then, is fundamental to the
ability of the digital to upend the analog world, the reason
why anymedia that can be digitized or produced digitallywill
eventually succumb to the logics of digital information and its
circulation through electronic networks—an argument pow-
erfully encapsulated by Negroponte’s (1995) slogan, “from
atom to bits.”
Such a characterization is quite problematic. If bits are

not made of atoms, what could they possibly be made of? In
this paper, I argue, as common sense intuitively suggests, that
bits are necessarily both logical andmaterial entities. Further-
more, as the theoretical and empirical material presented in
this paper will demonstrate, computing systems are suffused
through and through with the constraints of their material-
ity. I thus use materiality as an entry point in the analysis of
the computing infrastructure, the infrastructure that already
mediates a breathtaking proportion of social relations—from
education and healthcare to the search for romantic partners.
The computing infrastructure—e.g., operating systems,

networking protocols—is precisely tasked with relieving
users and programmers from the specifics constraints of the
material resources of computation: within a given platform,
applications run regardless of processor type, storage media,
or network connection.Yet, this abstraction from thematerial
can never fully succeed. Rather, it stands in dialectical ten-
sion with the evolution of these material resources and with
the efficiency trade-offs their abstraction requires. Materi-
ality then is a key analytical category from which to track
the complex positioning of market players as they respond
to fundamental shifts in infrastructure—wireline to wireless,
single to multicore, desktop to cloud and mobile. Indeed,
the characteristics of this infrastructure matter a great deal,
since it determines the base material conditions under which
applications, services, and devices will perform (Engler &
Kaashoek, 1995).
Furthermore, a focus onmateriality highlights that compu-

tation is a mechanical process based on the limited resources
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of processing power, storage, and connectivity. Indeed, the
computing professions devote much of their activity to
the management of these limitations. In mediating access
to the physical resources of computation, infrastructure soft-
ware must also manage the competing demands users place
on them.Amaterial analysis foregrounds how systems design
must necessarily engage in the oldest political problem in the
world: the allocation of scarce resources among competing
stakeholders.While the shift to cloud computing, the defining
infrastructural work of our time, is typically framed either in
the language of technical rationality or that of the informa-
tion age’s infinite frontier,materiality provides for an analysis
of infrastructure building in terms of the politics of resource
allocation. Indeed, a focus onmateriality suggests a profound
disconnect between such political work and the self-portrayal
of computing science as primarily concerned with the design
of efficient abstractions (e.g., Wing’s [2006] “computational
thinking”).
There is thus much to be gained—theoretically, method-

ologically, empirically—from approaching bits as materials
objects. Yet various factors, including the trope of imma-
teriality, have resulted in inadequate theorization of this
fundamental dimension of information systems. Given this,
the argument that follows will require delving into the nitty-
gritty of the technical worlds where the constraints of that
materiality are confronted. This exploration will take the
form of technical histories of major system abstractions—
the von Neumann machine, the file, the packet—that will
retrace efficiency trade-offs resulting from shifts in the mate-
rial basis of computation. Such design histories reveal the
digital world’s independence from material as permanently
unsettled, under constant pressure to renegotiate the exact
terms of that liberation.
This, then, is a paper about stuff, the stuff of computa-

tion (Miller, 2009). I begin by tracing the development of
the immaterial trope and its impact on professional prac-
tice, and review recent attempts at analyzing the materiality
of the digital. Building on this prior work, I focus on the
design strategy of modularity functions as the core mecha-
nism for abstracting, structuring, and distributing thematerial
resources of computation, at the cost of efficiency trade-
offs. Three empirical sections then illustrate the historical
evolution of such trade-offs in the context of major com-
putational resources—processing, storage, and connectivity.
I conclude by discussing the implications of this argument
for historical studies of computing, systems design, and
governance.

Information, Immaterial

The trope of immateriality is not a new phenomenon by
any measure. While William Gibson’s Neuromancer (1984)
precipitated the term “cyberspace” into public consciousness,
it also reiterated for a new set of technologies long-standing
themes in the history of electronic communications, dating
back at least to the telegraph: “the promise of telegraphy
is metaphysical: by annihilating space and time, it allows

humankind to escape physical limitations. The power and
ubiquity of electricity are metaphorically attached to a newly
disembodied consciousness” (Rosenheim, 1997, p. 93). Net-
worked computers have provided renewed valence to this
promise, as articulated with great lyrical force in the defining
mid-90s manifesto of the Internet, Barlow’s “A Declaration
of the Independence of Cyberspace” (1996). Barlow placed
immateriality at the center of his analysis of cyberspace as a
place altogether distinct from the material world:

“Governments of the Industrial World, you weary giants
of flesh and steel, I come from Cyberspace, the new home of
Mind. . . .Your legal concepts of property, expression, iden-
tity, movement, and context do not apply to us. They are all
based on matter, and there is no matter here.”

Less lyrical but equally influential, Negroponte’s Being
Digital (1995) is also structured around the liberation of
information from matter. Contrasting the costly and labori-
ous movement of physical goods with “the global movement
of weightless bits at the speed of light” (p. 12) leads him to
conclude that, in the digital era, “the medium is no longer the
message” (p. 61).
One might be tempted to dismiss Barlow’s and

Negroponte’s manifestos as partially guided by an irrational
exuberance that has since been tempered by, among other
things, the crash of the dot-com economy at the turn of the
millennium. Yet, for a number of influential scholars, the
immateriality of digital information continues to serve as
the conceptual linchpin for their analysis of the widespread
impact of information technologies.
It is central, for example, to Viktor Mayer-Schönberger’s

recent and widely discussed essay on the value of forgetting,
Delete (2009).He argues the negligible cost of preserving and
accessing information threatens to usher in an era of “perfect
remembering,” with dire consequences for the fundamental
human cognitive process of forgetting. The argument is pred-
icated on an analysis of digital information as superior to all
previous media “because it lacks the noise problem” (p. 57).
This purported ability to escape the decay wrought by use,
reproduction, or time strongly shapes Mayer-Schönberger’s
subsequent analysis of potential remedies to the end of
forgetting (Blanchette, 2011).
It is also central to Blown to Bits: Your Life, Liberty and

Happiness after theDigital Explosion, a widely praised guide
to the information age co-written by MIT’s Hal Abelson,
Harvard’s Harry Lewis, and Ken Ledeen (2008). Again, the
analysis is structured around binary encoding as the ground
zero of information representation: “Bits are bits, whether
they represent movies, payrolls, expletives, or poems. Bits
are bits, whether they are moved as electrons in copper wire,
light pulses in glass fiber, or modulations in radio waves. Bits
are bits, whether they are stored in gigantic data warehouses,
on DVDs sent through the mail, or on flash drives on key-
chains” (p. 294). The imperviousness of bits to their material
embodiment is highly significant for designing appropriate
information policies. For the first time in history, we are
in a position to enact regulations that do not depend on
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the historical accretions that have heretofore bound together
media and content:

“Law and policies regulating information developed around
the technologies in which that information was embodied.
The digital explosion has reduced all information to its lowest
common denominator, sequences of 0 and 1s. . . . The univer-
sality of bits gives mankind a rare opportunity. We are in a
position to decide on an overarching view of information.We
can be bound in the future by first principles, not historical
contingencies” (p. 294).

In certain areas of professional practice, the question of
digital materiality will play a fundamental role in delineating
the shape of things to come. While records managers must
deal with the shift to electronic documents, the rules that gov-
ern the admissibility and weighing of documentary evidence
in courtswere largely designed around the technologies of the
printed world—paper, ink, handwritten signatures, stamps,
etc., with the consequence that long-standing evidential
concepts of authorship, originals, integrity seem altogether
inapplicable to the world of digital records. In a recent trea-
tise on the question, George Paul (2009) argues that reform
must necessarily proceed from the recognition that electronic
documents are made from entirely new stuff:

“Writings in the digital realm are different. They do not
depend on the alteration ofmatter. Such records are very close
to ‘pure information,’and exist by virtue of a mere succession
of the differentiation of 1s and 0s, distinguished by electric-
ity flowing in machine systems. In writing today we deal in
pure information objects, unfettered by matter. They can be
whisked or shaken or rearranged in an instant” (p. 19).

This immateriality implies that entirely new methods for
establishing authenticity must be deployed: “Because digital
records do not depend on the alteration of matter, a process of
inspecting them is not a reliable paradigm for testing authen-
ticity” (p. 21). The appropriate paradigm, Paul argues, is one
based on mathematical algorithms, cryptographic digital sig-
natures, which will offer new (and superior) guarantees for
integrity and authorship.
The above examples thus suggest that the trope of imma-

teriality is more than a convenient metaphor information
age pundits reach for to cut through technical complexity.
Rather, it clearly plays a central role in several important
arguments over the implications of our current society-wide
shift to digital information. In fact, Hayles (1999) argues it
is fundamental to the project of posthumanity, a worldview
that informs and is articulated within the various scien-
tific disciplines and literary genres that claim cybernetics
as their intellectual ground—including artificial intelligence,
robotics, artificial life, science-fiction, etc. At the heart of
this project lies a fundamental assumption, that informational
patterns (including human consciousness) are ontologically
superior to their (accidental) material instantiations (includ-
ing the human body); a promise, that information “can be free
from the material constraints that govern the material world”
(p. 13); and a vision, the implication that “if we can become
the informationwehave constructed,we can achieve effective

immortality” (p. 13). Digital information systems provide a
particular valence to this project, given that

“. . . reality at a fundamental level is seen as form rather
thanmatter, specifically as informational code whose essence
lies in a binary choice rather than material substrate. . . .
The assumption that form occupies a foundational position
relative to matter is especially easy to make with informa-
tion technologies, since information is defined in theoretic
terms . . . as a probability function and thus as a pattern
or form rather than as a materially substantiated entity”
(pp. 232–232).

By all measures, then, philosophical commitments to
immateriality should not be underestimated. But even if a
critical exercise were to corral the rhetorical efficacy of such
a position, what alternative models exist? If digital infor-
mation is not immaterial, in what ways is it material? What
relevant physical constraints should a theoreticalmodel of the
materiality of digital information capture? Understandably,
it is only recently that scholars have begun seriously investi-
gating analytical frameworks that might provide appropriate
answers to these questions.

Information, Material

A direct consequence of the prevalence of the trope of
immateriality is the dearth of research on the topic, and it is
only recently that researchers have self-identified as explor-
ing the materiality of digital information. Several of these
researchers have been inspired by previous work in the field
of descriptive bibliography, work that sought to link themate-
rial conditions of the production, expression, and reception
of printed materials to their production of semantic meaning
(McKenzie, 1985/1999). For example,Drucker (2009a) notes
“the stripping away ofmaterial informationwhen a document
is stored in binary form is not a move from material to
immaterial form, but from one material condition to another”
(p. 147). The task then is to map how the particular material
condition of electronic media makes possible or impossi-
ble new potentialities for reading. In a similar vein, Hayles
(2002) has explored the theme of materiality as manifested in
electronic literature, arguing that literature has traditionally
conceived of the body of the book, of the writer, and of the
reader in terms of “assumptions specific to print,” and that
electronic media brings them together in new configurations,
providing uswith “an opportunity to see printwith new eyes.”
Knoespel and Zhu (2008) suggest the popular character-

ization of cyberspace as “an ethereal escape from the filthy,
hopeless ‘meat’ world” is inherited from a Cartesian dual-
ism that posits a strict dichotomy between language (spirit)
and the material world. Moving beyond such “romantic
notions of immateriality,” they suggest computing systems
are characterized by a “continuous materiality,”

“. . . awide spectrum ofmateriality activated by a hierarchy of
codes that moves from ‘lower’machine code to ‘higher’ read-
able computer languages and to codes in general (structural,
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legislative, social, cultural, etc.). Each level of code engages
natural language and the physical world in different ways,
varying from the shifting voltage of computer circuits to our
everyday activity. Altogether, the hierarchy of codes con-
structs a field of diverse materiality that is continuous and
interconnected” (p. 236).

Continuous materiality accounts for the materiality of
computing on several levels: through the immanence of
embodied experience in language,manifested by the dual reg-
isters through which code operates. Instructions to machines
(open window, cut and paste) are also apprehended by
humans via the metaphorical function of language. Even
while programmers mostly operate within strictly positivists
conceptions of language, computer code creates relationships
among multiple symbolic systems, those necessary to move
the cogs of the machine, and those necessary for those opera-
tions of the machine to be situated within language, and thus,
social order. At the same time, multiple kinds of computer
code coexist within the computer, each potentially mediating
among different codes pertinent to different social systems.
In a similar vein,Warner (2009) has argued that the linguis-

tic concepts of syntagm and paradigm, and the information
theoretic concepts of message and messages for selection are
derived from a commonmaterial basis, that of the line and the
surface. He suggests that “understanding the material basis
for concepts from linguistics and information theory, and
locating them precisely in relation to current material reali-
ties, might then yield a basis for a fuller understanding of the
effects of computational procedures, themselves constrained
by a common and inherited material reality” (p. 198).
Kirschenbaum (2008) has offered the most original and

sustained investigation of the physical constraints that obtain
on digital media, through his extensive analysis of the mun-
dane, the ubiquitous, and yet opaque and mysterious hard
drive, the inscription workhorse of the computing age, and
yet, untilKirschenbaum, a device bereft of sustained analysis.
His first line of attack concerns the curious discrepancy

existing between the literary critics’ view of electronic writ-
ing as ephemeral, fundamentally unstable, forever malleable
and that of computer forensics experts, whose livelihood
is predicated on the recovery of the numerous traces digi-
tal objects leave behind, even after their presumed deletion.
The confrontation rapidly exposes the influence of a certain
“media ideology of electronic text . . . the notion that in place
of inscription, mechanism, sweat of the brow (or its mechan-
ical equivalent, steam), and cramp of the hand, there is light,
reason, and energy unleashed in the electrical empyrean”
(p. 39).Kirschenbaum’s project then is to define “an approach
capable of accounting for the ways in which electronic data
was simultaneously perceived as evanescent and ephemeral
in some quarters, and remarkably, stubbornly, perniciously
stable and persistent in others” (p. 27). His answer rests
on the distinction between two types of digital materiality,
“forensic” and “formal.”
Institutions with highly detailed protocols for control-

ling the creation, access, and eventual disposal of sensitive,

classified information have been long aware that deleting dig-
ital information from hard drives requires more than simply
moving it to the trash icon. Various methods and procedures
have been developed to combat the phenomenon of “data
remanence,” the residues left behind by the physical pro-
cesses used to write and erase digital data on electronic stor-
age media—from overwriting to media destruction. Because
the performance of these processes varies from one inscrip-
tion/deletion to the next—due to variations in the magnetic
substrate and the exact positioning of the read/write head—
earlier data may still be accessed in the form of an “erase
band” along the edge of magnetic track. Thus, in ways that
points to its shared condition with other media, the storage of
digital information exhibits specific constraints on “revers-
ing or obscuring what are tangible interventions in a physical
medium” (p. 60). “Forensic materiality” thus captures the
application of the principle of individualization, “the idea that
no two things in the physical world are exactly alike” (p. 10)
to digital storage.AsKirschenbaumpoints out, “that the scale
here ismeasured inmeremicrons does not change the fact that
data recording inmagneticmedia is finally and fundamentally
a forensically individualized process” (p. 63). And it should
come as no surprise that the social adoption of a new writing
technology gives birth to “an eruption of tools and techniques
to fix, expunge, and recover their meaning-bearingmarks and
traces” (p. 71).
Kirschenbaum’s concept of “formal materiality” encom-

passes two different dimensions. The first suggests one
possible answer to the question of howdigital writing so com-
pelled academics to uncritically characterize it as free from
the material. Borrowing an insight fromDaniel Hillis (1999),
Kirschenbaum notes how computers’ ability to continually
performerror-correction enables them topresent digital infor-
mation as “noiseless.” As he notes, “computers are unique
in the history of writing technologies in that they present a
premeditated material environment built and engineered to
propagate an illusion of immateriality” (p. 135). The sec-
ond dimension of formal materiality points to file formats
and the structuration they impose on digital data as powerful
constraints on mutability of bits—for example, in the case
of JPEG images, different levels of compression result in
images perceptually indistinguishable, but from which some
information has been irretrievably lost. Similarly, the encod-
ing of data in a file format enables or disables specific kinds
of computational manipulation—e.g., a TIFF image of a doc-
ument does not support search in same way a text file will.
Thus, despite the flexibility andmutability of digital informa-
tion, “the play of code is not always infinitely fungible and
arbitrary—transformations are not always reversible, nor are
all transformations always possible and achievable” (p. 149).
In spite of these insights, scholars still find it difficult

to characterize the digital in material terms. For example,
Leonardi (2010) notes the material properties of artifacts are
those that enable and constrains them in ways that “simply
cannot be overcome,” e.g., the opacity of wood. Proceeding
from the premise that “a digital technology like a word pro-
cessing program is an artifact that is not comprised ofmatter,”
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he then concludes that “moving away from linkingmateriality
to notions of physical substance or matter may helps scholars
of technology integrate their work more centrally with stud-
ies of discourse, routine, institutions and other phenomena
that lie at the core of . . . social theory, more broadly.”
Building on the works outlined above, I propose in the

following sections an analytical framework that may in fact
integrate digital materiality with a broad range of social sci-
entific disciplines. The primarymechanism that mediates and
structures thismateriality is the design strategy ofmodularity.

Modularity and Layering

Information systems can be divided into three major types
of components: applications that provide services to users,
usually according to some task model or metaphor (e.g., “the
desktop,” “word processing,” “show slides”); infrastructure
software that mediates applications’ access to shared com-
puting resources, and the physical devices that provide pro-
cessing power, storage, networking. Infrastructure software
may be located in operating systems on commodity com-
puting devices, embedded in hardware (e.g., firmware), or
execute on specialized computers (Web servers, routers, etc.).
The interoperability of applications, infrastructural software,
and devices is an extraordinary engineering achievement.The
sendingof a simple email over the Internet requires the correct
functioning of thousands upon thousands of heterogeneous
material and logical components, connected together in a net-
work of staggering complexity. Such a systemmust be able to
accommodate, among other things, growth in size and traffic,
technical evolution and decay, diversity of implementations,
integration of new services to answer unanticipated needs,
emergent behaviors, etc. The solution adopted by the soft-
ware and hardware industry to manage this complexity is
the design strategy of modularity, a strategy with widespread
application in manufacturing (from automobile to disposable
razors), architecture, and education (curriculum design).
Modularity is a strategy for designing the architecture of

an artifact, in particular, the relationship of its function to its
structure (Ulrich, 2007). The design of a disposable blade
safety razor, for example, realizes two distinct functional
requirements, cutting hair, and hand manipulation.1 Safety
razors are typically structured in two separate components
(or modules), the blade and the handle, each implementing a
distinct functional requirement. The blade and handle com-
ponents are decoupled, insofar as a change in one component
(gradual wear of the blade) will not result in a complete
breakdown of the artifact, since it can be replaced. A mod-
ular architecture is one that realizes a one-to-one mapping
between functional requirements and components, as well
as decoupled interfaces between those components (Ulrich,
2007).
Such separation of functional specification from imple-

mentation has multiple advantages for computing systems

1One should note that the assignment of functional elements to artifacts
is far from a well-defined issue; see Preston (1998, 2000).

design. As early as 1959, McGee noted that pressures to
extract maximum value from expensive data processing
equipment led programmers to “hand-tailor their programs,”
rather than developingmore general techniques.This resulted
in “first of all, a prodigious outlay of programming time; and
secondly, a running program which is ‘chiseled in granite’
and which effectively defies any attempts to modify it at a
later date” (McGee, 1959). 25 years later, Parnas argued that
modular design provided just the solution to this vexing issue:

“. . . it should be possible tomake amajor software change as a
set of independent changes to individual modules, i.e., except
for interface changes, programmers changing the individual
modules should not need to communicate. If the interfaces
of the modules are not revised, it should be possible to run
and test any combination of old and new module versions”
(Parnas, Clements, &Weiss, 1984, p. 409).

In addition to providing a strategy for managing change,
modularity also reduces system complexity by division of
labor: modules can be assigned to different teams, each
module small enough to be fully comprehend by a single
individual (Blaauw & Brooks, 1997). The working of modu-
larity is plainly visible when it comes to the widely different
hardware components that can connected to computer sys-
tems through a single peripheral interface specification—e.g.,
USB or SCSI. Such an interface specifies both the services
which the particular device must provide (e.g., storage and
retrieval of bits, status information, etc.) and the software
and hardware language necessary to interact with the module
(e.g., connector pins assignment, with corresponding control
signals).
Layering is a specific flavor of modularity where modules

are organized in a series of client-server relationships: each
layer is a server to the layer above, and a client to the layer
below.While the best-known example of layering in software
infrastructure is the famous 7-layers deep “network stack”
defined by the ISO OSI Model (Zimmermann, 1980), each
computing resource (i.e., network, storage, and processing)
is accessed through a similar stack of layers. In each case,
bits move up from their grounding as signals in some phys-
ical media (fiber optic, magnetic drive, electrical wires) to
binary information organized according to units defined by
each layer (file, datagram, etc.)Applications access the stacks
through “application programming interfaces” (APIs) to the
various modules of the operating system.

Trade-offs

The plug-and-play possibilities that modularity bring to
systems design are often remarked on—it is for example
one of five essential principles of new media identified by
Manovitch (2007), and it is at the core of Zittrain’s (2009)
analysis of the “generative architecture” of the (early) Inter-
net. That these possibilities must be understood together
with the particular constraints modular designs bring to the
table is, however, rarely remarked on. As McGee remarked,
the most efficient programs are hand-tailored, providing
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no generalization whatsoever; conversely, highly general
abstractions will result in significant loss in efficiency. This
is because the specification of an abstraction (the interface)
general enough to accommodate awide range of implementa-
tions necessarily involves trade-offs, “between the freedom
that the abstraction provides and the efficiency of possible
implementation” (Agre, 1997).
A simple example can help illustrate this concept. Con-

sider the problem of organizing a closet full of disparate
objects—e.g., sporting equipment, children toys, craft sup-
plies, clothing. If the primary goal is to pack as many objects
in the closet as possible, the best approach is to pack based
solely on objects’ size and shape, using the closet itself as
a box. A much more practical solution, however, will use a
widely available modular structure, storage bins, and group
objects by categories, filling and stacking as many bins as
will fit. In contrast with the first solution, packing, locating,
and retrieving objects is greatly simplified, but this conve-
nience comes at the expense of overall density: bins will be
more or less full, and they will fit more or less snuggly in the
closet itself. Different bin sizes, as well as different types of
objects, will result in different space inefficiencies.2

This is the classical dilemma of high-level programming
languages: the more a language’s constructs abstract away
from the underlying physical machine, the less efficient the
resulting code tends to be. For example, functional languages
(e.g., Lisp) relieve programmers from the burden of request-
ing and releasing memory locations for variables, allowing
them to proceed as if memory was an inexhaustible resource.
But memory is, in fact, always a finite resource, and instead
of manual management by users, “garbage collection” rou-
tines must reclaim obsolete memory locations, a process that
itself consumes processing power, as it seeks to reconstruct
after-the-fact the memory space allocated and de-allocated
by the programmer. The programming convenience of a
boundless memory is thus incurred at the cost of process-
ing resources. This makes garbage collection particularly
inappropriate for real-time applications (e.g., software that
implements antilock brakes), given the routine may request
processing power at a crucial moment.3 The point here is
that the trade-offs implied by modularity will not affect all
applications equally, or even the same application under all
circumstances.Yet, the design trade-offs inherent in abstract-
ing from physical resources are rarely acknowledged in the
computing literature.

The Digital Abstraction

These trade-offs manifest themselves all the way down
to the lowest level of the stacks, the physical layer. Agre

2This very trade-off was at the heart of the design of the most widespread
modular structure in the world—the shipping container. See Levinson
(2006), in particular Chapter 7, “Setting the Standard.”

3In fact, the most efficient garbage collection algorithms are referred
to as “stop the world” algorithms, as they require the executing program
to stop altogether during the memory reclamation process, leading to an
“embarrassing pause” (Henriksson, 1998).

(1997) notes the most fundamental abstraction computers
rely on is the “digital abstraction,” the transformation of phys-
ical signals into discrete binary quantities. From Tinker Toys
to hydraulic valves, as long as a material can support the
basic operations of the digital abstraction, it can be used as
the basis for a computing system (Hillis, 1999). However,
each of these materials brings its own characteristics to the
performance of these operations, including susceptibility to
interference, frequency of mechanical failure, relative lack of
speed, resistance and attenuation, and, of course, cost.
The digital abstraction can be maintained in spite of

this “noise” because, as Kirschenbaum notes, through error-
correction codes, buffering, and other techniques, computers
can self-efface the static—scratches on a record, smudges on
paper—that typically signals the materiality of media:

“All forms of modern digital technology incorporate hyper-
redundant error-checking routines that serve to sustain an
illusion of immateriality by detecting error and correcting it,
reviving the quality of the signal, like old-fashioned telegraph
relays, such that any degradation suffered during a subse-
quent interval of transmission will not fall beyond whatever
tolerances of symbolic integrity exist past which the origi-
nal value of the signal (or identity of the symbol) cannot be
reconstituted” (p. 12).

These mechanisms, formally described in information
theory, are used throughout networked computing systems:
the impact of media irregularities on hard drive platters
can be mitigated through the use of error-correction codes;
the unpredictability of network bandwidth can be miti-
gated through the use of buffering, ensuring smooth delivery
of latency-sensitive content—Hillis (1999) calls this “the
essence of digital technology, which restores signal to near
perfection at every stage” (p. 18). It is this ability to ceasessly
cleanup after its own noise that so powerfully enables com-
puters to seemingly sever their dependency on physical
processes that underlie processing, storage, and connectivity.
Yet the physical characteristics of a resource (be it compu-

tation, storage, or networking) cannot simply be transcended,
and noise can only be conquered at the expense of other
resources. For example, manufacturers must design elec-
tronic circuits using a voltage differential between 0 and 1
broad enough to fight off interference by galactic cosmic
rays (“single event effects”), at the cost of increased power
consumption (May &Woods, 1979); error-correcting codes,
widely used to protect against transmission interference,
result in both data expansion (and thus, reduced capacity) and
increased processing load. In the latter case, designers will
choose among different codes according to both the expected
profile of the noise (frequency, intensity), and the resource
trade-offs. Once again, then, independence from the material
can only be obtained at the costs of certain trade-offs.

Sharing

Computing resources (processor, storage, network) are
not only finite, but to maximize their efficiency and return
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on investment must be shared among multiple applications
and users. Thus, abstractions not only relieve programmers
from the need to manage the finiteness of resources, but
also from the need to manage how they are shared with other
applications, competing for their share of limited processing
power, memory, bandwidth, storage. This is not only for the
purpose of programming convenience, but because policies
for sharingmust implemented at the system (rather than appli-
cation or user) level. Once more, this will inevitably involve
various trade-offs, favoring some types of applications over
others. For example, packet switching protocols maximize
the utilization and sharing of finite communication links by
breaking down users’ messages in small packets, and rout-
ing them to their destination using a “best-effort” policy that
impacts unevenly latency-sensitive (voice, streaming video)
and latency-insensitive (browsing, email) applications.

Stack Equilibrium

Two opposing forces are thus at play with respect to the
make-up of the stack that obtain at any particular moment
of transition in technical history: on the one hand, the free-
dom provided by modular design and the resulting efficiency
trade-offs; on the other hand, the primary drive of com-
puting systems design, greater efficiency, as measured by
“the amount of useful computational work that gets done
in the service of specified goals by a given amount of machin-
ery in a given period of time” (Agre, 1997, p. 67). It is
the conflicting pressures of these two forces that determine
the evolution of the layered abstractions that link digital
information to its material basis.
In the next three sections I illustrate the operation of these

forces by tracing the historical definition of major abstrac-
tions within the processing, storage, and networking stacks,
and their evolution as they respond to changes in the material
basis of computing resources. In particular, I will highlight
how the drive to efficiency manifests itself as the pressure to
co-design layers, thus violating the fundamental principle of
modular independence itself.

The Processing Stack

A processor, or central processing unit (CPU), contains
circuit logic designed to execute programs, i.e., sequences
of instructions. These instructions enable a programmer
to access three basic set of resources: (a) numerical rou-
tines, typically provided by the arithmetic-logic unit (ALU);
(b) memory management services, i.e., reserving, storing to,
and reading from memory locations; and (c) flow control,
i.e., selecting the next instruction to be executed, based on
conditional branching, jumps, etc.
Each processor (or processor family) provides its own set

of instructions, each directly operating on the processor’s
hardware by performing the necessary sequences of logical
operations (opening and closing gates, moving data to and
from memory, etc.) to produce the appropriate result. The
set of instructions of a processor is its machine language,

and provides the interface to the processor conceived as a
module. The computational model expressed by an instruc-
tion set is referred to as its “instruction set architecture” (ISA).
The designers of a processor and its accompanying

machine language must contend with the fundamental trade-
offs between convenience of instructions to programmers and
efficiency of implementation. That is, in machine language,
“the expressions are costly, . . . each operator and variable
in the vocabulary must be implemented and realized by the
interpreting mechanisms. Each bit in a machine-language
program occupies a costly memory cell and must be obtained
from that cell at the expense of costly time” (Blaauw &
Brooks, 1997, p. 17). The computer architects thus evalu-
ates each expression of the machine language against their
“bit budget,” the amount of memory locations they have to
work with, as well as the “bit traffic” each expression will
generate.
While early computers were always programmed directly

in machine language, the difficulty of writing and debug-
ging machine-level code of increasing difficulty generated
interest in the development of “high-level” programming
languages that would provide more readable notations for
specifying instructions, leading to greater efficiencies in pro-
gramdevelopment and tuning.Before they canbe executedby
a processor, programs written using high-level programming
languages must first be processed by a compiler, a program
which takes a program in a source language and translates
it into an equivalent program in the machine language of
a given processor. A program in machine language is “that
representation of programs that resides in memory and is
interpreted (executed) directly by the hardware” (Blaauw &
Brooks, 1997, p. 16).
High-level programming languages provide several ser-

vices for programmers that simplify access to and use of the
basic resources of the processor, such as automatic memory
management, data type checking, and enforcement.They also
extend the underlying computational model of the machine,
by providing for the creation of new data types and opera-
tors, broader ranges of control (e.g., recursion), and the ability
for programmers to create their own abstractions (functions,
objects). In other words, “a language rebuilds the machine
to provide more convenient facilities, and a program fur-
ther rebuilds the language to provide facilities closer to the
problem to be solved” (Sethi, 1996, p. 11). The computa-
tional model implemented by programming language thus
defines “virtual machines” that run on the basic physical
hardware implemented by the processor. The basic trade-off
for this convenience is one of efficiency, that is, the code
generated automatically by a compiler typically takes longer
to run and occupies more space than hand-crafted machine
language code. Despite this, most programmers today resort
to high-level languages, and compilers designers are tasked
with reconciling the abstractions offered by a language’s
computational model, and its implementation in the machine
language of the underlying machine. However, the indepen-
dence of these two layers of abstraction—machine versus
programming language—is under constant pressure.
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Co-evolution of Layers

In certain cases, the abstractions defined by high-level
languages may lead to design decisions at the level of imple-
mentation, in top-down fashion. In the 1980s, the RISC chip
design revolution proceeded in part from the observation that
the convenience of the abstractions provided by high-level
languages had become expected by programmers:

“. . . instruction sets for conventional CPUs have been defined
with an implicit assumption that many programmers will
use assembly language. . . . But, increasingly, programmers
do not use assembly language, except where optimal perfor-
mance is essential or machine functions are required that are
not reflected in the source language” (Radin, 1983, p. 40).

Given this, it made sense to design chips that directly
implemented high-level abstractions with improved effi-
ciency.4 In 1980, IBM experimented with the design of a
minicomputer whose machine language was co-designed
with an optimizing compiler for the PL.8 language (a sub-
set of PL/1). In similar fashion, from the 1970s through
the 1990s, several generations of machines providing hard-
ware support to run Lisp programs more efficiently were
developed for the AI community by both startups and estab-
lished computer manufacturers, including Symbolics, Xerox,
and a Texas Instruments/Apple partnership (Pleszkun &
Thazhuthaveetil, 1987). Other machines were developed
to support the object-oriented strategies of Smalltalk (e.g.,
Ungar, Blau, Foley, Samples, & Patterson, 1984). As viable
commercial products, all succumbed to the rise of commodity
personal computers, whose cost/performance ratio negated
much of the commercial rationale of these efforts.
Another type of specialized processor design, parallel

architectures, has also suffered a long history of commer-
cial failures, despite the dazzling promise of increasing
processing power by several orders of magnitude. Parallel
architectures altogether eschew the von Neumann model of
serial computation (first proposed in 1945 in the context
of the EDVAC), which forces algorithmic design through
the very narrow funnel of sequential programming. Reducing
all problems to sequences of atomic instructions has proved
enormously convenient for programmers, but has resulted in
serious design constraints: because of this “von Neumann
bottleneck,” much of a conventional processor’s circuitry
remains inactive at any one moment, often waiting on the
much slower memory subsystem. Thus, speed increases over
the last 40 years have been predicated on a strategy of increas-
ing clocking (the speed at which instructions are processed)
and transistor density:

“. . . the implicit hardware/software contract was that
increased transistor count and power dissipation were OK, as
long as architectsmaintained the existing sequential program-
ming model. This contract led to innovations that were inef-
ficient in terms of transistors and power . . . but that increased

4See also Hopper andMauchly (1953) for an early argument for co-design
of hardware and programming languages.

performance while preserving the sequential programming
model” (Asanovic et al., 2009, p. 56).

This contract has become unsustainable, as chip designers
have now reached the “power wall,” i.e., physical limitations
on the ability of transistors to dissipate heat efficiently (result-
ing in burning hot laptops!). In 2004, Intel announced all
future product designs would be based on multicore archi-
tectures, the packing of multiple processors on a single
chip assembly. The decision signaled a turning point in the
evolution of computing: “the La-Z Boy era of program per-
formance is officially over, and programmers who care about
performance must get up off their recliners and start making
their programs parallel” (Patterson, 2010, p. 32).
This will require more than a simple motivational exer-

cise: by all accounts, breaking the dominance of the von
Neumanmodel is as formidable a challenge as the computing
professions have ever faced, a profound break with existing
programming practice. It will require a greater commitment
to parallel methods in the computer science curriculum, but
just as important, it will require the development of new
abstractions that will shield programmers from the inher-
ent complexity of parallel programming. Furthermore, this
new stack of abstractions will face the difficult task of simul-
taneously supporting applications that leverage the power of
multicore architectures, while still ensuring that “legacy code
still works with acceptable performance” (Asanovic et al.,
2009, p. 59).
These pressures on the evolution of the processing stack

illustrate the tension between the freedom afforded by mod-
ularity, and the inefficiencies that it necessarily brings into
play: in this case, a single modular design, the von Neumann
model, ruled the stack for over 60 years. This dominance
resulted in economies of scale that defeated repeated attempts
at creating a viable market for alternative, parallel architec-
tures, despite their promise for increased processing power.
The persistence of the model was further enabled by a
computer science curriculum committed to the convenience
affordedby sequential programming.Yet changes in themate-
rial basis of computing resource necessarily ripple up the
stack, as exemplified by efforts to design new programming
abstractions for parallel architectures.

The Storage Stack

In contrast to the electronic components that make up
the processor, the media leveraged over the years to store
and access data—punch cards, magnetic tapes, hard drives,
flash memory—profusely signify their materiality, through
mechanical noise, slow speed, poor reliability, and sensitiv-
ity to wear. The abstractions that make up the storage stack
must thus provide consistent services to applications in the
context of wide discrepancies in the performance character-
istics of storage technologies. The defining characteristic of
these devices is their reliance on mechanical motion. From
punched card to magnetic tape to disk drives, large-scale
external storage has been realized by the physical movement
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of data, spread over one-dimensional (tape), two-dimensional
(floppies), or three-dimensional surfaces (hard drives).
Overall, the use ofmechanicalmotion, however finely con-

trolled, does not sit comfortably with the world of solid-state
electronics. The most important friction is the huge differen-
tial in access time between internal and external memory. In
contrast to the movement of bits in strictly electronic hard-
ware, the reading and writing of bits on external media is
extraordinarily slow, from four to six orders of magnitude
slower! Thus, in applications that process large amounts of
data, fetching and writing data to and from external memory
is often the main performance bottleneck in computation. As
Blaauw and Brooks (1997) note,

“Four orders of magnitude is an immense ratio. Imagine a
CPU doing an operation each second; a disk half-rotation 104

slower takes three hours! . . . While a disk turns half around
or a tape accelerates to reading speed, a workstation CPU can
execute perhaps 100,000 instructions” (p. 453).

This differential has been an important constraint from
the very first days of digital computer design. In the 1950s,
engineers experimented with a wide range of media and tech-
nologies as potential candidates for both internal and external
storage: in the first case, these includedWilliams tubes, mer-
cury delay lines, and magnetic drums, etc. (Eckert, 1953); in
the second case,magnetic tape, photographic film, paper tape,
magnetic wire, and magnetic drums (Snyder, 1952). While
speed was a primary consideration, design choices were, as
Eckert pointed out, “strongly influenced by the cost of achiev-
ing that speed, and by the requirements of the other circuits”
(p. 1393).
Blocks are one structure that aims to reduce the impact of

the speed differential. The block size of a device is typically
the amount of data transferred to/from the device in a single
operation:

“Access varies greatly because of medium motion. Finding
an arbitrary bit may take quite a long while. Finding the next
bit on the track is very quick—a fraction of a microsecond.
Therefore, if there is the slightest chance . . . of needing the
next datum after finding the one sought, one is well-advised
to read it also intomemory. This logic leads inescapably to the
reading and writing of data in blocks whose size is limited
chiefly by the cost and availability of memory space. If it
takes a long time to go to the well, one should bring back as
muchwater as the bucket will hold” (Blaauw&Brooks, 1997,
pp. 453–454).

The trade-off here is that because the block, rather than the
bit, becomes the fundamental unit for reading and writing to
storage, results in significant amounts of wasted space for
applications that generate large quantities of small files.
Furthermore, storage devices strive to efficiently provide

two fundamental and somewhat contradictory objectives:
providing the highest throughput possible in reading andwrit-
ing sequential streamsof bits, andminimizing the time it takes
to locate a particular datumon themedia—so-called “random
access” (Buchholz, 1963, p. 91). To optimize both of these

features requires carefully balancing the structures that gov-
ern the placement of the data over the media (e.g., tracks,
cylinders) with the mechanisms that govern the motion of
data.

The File System Interface

The primary abstraction that governs the relationship
between applications and storage device is the file. The
story of this abstraction must begin with the prominent role
played by punch-card equipment in data processing until the
late 1950s, a role now recognized in several studies (e.g.,
Campbell-Kelly, 1990; Yates, 2005). Punch cards served as
input and output media, as well as long-term storage to
the tabulating system. One punch card and its various data
“fields” constituted a “record,” while a collection of cards
constituted a “file” (Haigh, 2009).
The development of the electronic computers that would

eventually replace tabulators was a gradual process, in which
the issue of storagemedia played a defining role. Not only did
the efficiency and cost of computers depend to a great extent
on suitable techniques for fast internal direct access memo-
ries, but their ability to integrate with existing input, output,
and storage technologies (i.e., punch cards) was a crucial fac-
tor in ensuring their adoption. A computer such as the IBM
650, the world’s first mass-produced computer, remaining in
production from 1953 to 1969, encompassed the full range
of memory devices and input-output technologies available,
including a disk drive, amagnetic tape drive, units for reading
and punching cards, as well as tape-to-card and card-to-tape
conversion units. Because of this extensive variety of storage
devices, by 1957 IBM designers “were already distinguish-
ing between logical and physical aspects of data storage in
tape files, a key concept for the decoupling of application pro-
grams from specific hardware configuration and file formats”
(Haigh, 2009, p. 10).
The designers of the UNIVAC, one of the 650’s main com-

petitors at the time, chose to make reliance on magnetic tape
a distinguishing feature of their system. Indeed, “for most
customers, what was revolutionary about the UNIVAC was
not so much its stored-program design or even its electronic
processor, it was the use of tape instead of punched cards”
(Ceruzzi, 2003, p. 30). Yet, the logical organization of the
information was directly copied from that used in tabulating
systems:

“The concepts of records, files, fields, special codes to mark
the beginning and end of files, and the merging information
from one file to another (all ubiquitous in computer systems
today) have their origins in electromechanical punched card
machine methods dating back to the 1930s. Records using
the same basic format were laid out sequentially along the
strip of magnetic tape. Additional codes were introduced to
provide checks against corrupted data” (Haigh, 2009, p. 7).

The influential timemultics operating system that emerged
in the early 1960s to provide time-sharing for mainframes
included a “general-purpose” file system for external storage.
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Its design included features still widespread today, includ-
ing hierarchical directories, symbolic links (i.e., aliases), and
access control. MULTICS’ designers clearly saw the role of
the file system as insulating users (i.e., programs) from the
complexity of storage:

“In most cases a user does not need to know how or where
a file is stored by the file system. A user’s primary concern
is that the file be readily available to him when he needs it.
In general, only the file system knows on which device a file
resides. The file system is designed to accommodate any con-
figuration of secondary storage devices. These devices may
cover a wide range of speeds and capacities. All consider-
ations of speed and efficiency of storage devices are left to
the file system. Thus all user programs and all other systems
programs are independent of the particular configuration of
secondary storage” (Daley & Neumann, 1965, p. 222).

Ritchie andThomson’s design forUnix envisioned an even
more prominent role for files, stating, “themost important job
of Unix is to provide a file system” (Ritchie & Thompson,
1974, p. 366). In fact, the file is the dominant abstractionUnix
provides to programmers for any input-output device, from
paper tape to hard drives. Ritchie and Thompson proposed
a new data structure, the “inode,” that would release the file
system from theneed to determine in advancehow large a disk
file might eventually grow and improve the dynamic sharing
of storage space among users. An inode is an extensible tree
structure that provides an index to the disk location of the
blocks containing the file data.As the file grows, such “direct
blocks” are replaced by “indirect blocks” that, instead of data,
contain the disk location of the direct blocks.
Such a dynamic data structure provides enormous flexi-

bility to the file system—it may, for example, grow the file
as large as needed, and rapidly reclaim disk space for other
users as the file shrinks. The (significant) downside is that as
different users and applications create, expand, shrink, and
delete files on shared storage, the contents of a file become
randomly distributed over the storage device, with conse-
quential negative impact over sequential access. Subsequent
implementations of the original systemhave corrected for this
problem by increasing the block size (at the cost of increased
wasted space) and optimizing the sequential placement of
blocks, by trying “to allocate new blocks on the same cylin-
der as the previous block in the same file” (McKusick, Joy,
Leffler, & Fabry, 1984, p. 188). There is thus content tension
between the freedom provided by a system abstraction (grow
the file as needed), and the inefficiencies it introduces with
respect to the spatial placement of data.
The syntax and behavior of the Unix file system has been

standardized as part of the IEEE POSIX process, providing
a uniform interface to the various services its provides—
file creation, deletion, reading, writing, seeking, etc. It is
this standard interface that provides the glue for the design
of the Google File System (GFS) suitable for the pro-
cessing needs of its software engineers (i.e., working with
files typically in the multi-GB range) and for a computing
environment consisting of “hundreds or even thousands of

storage machines built from inexpensive commodity parts”
(Ghemawat, Gobioff, & Leung, 2003, p. 29). The main data
structure of the GFS is a “super inode” that sits above the
Unix file system. Like a regular inode, it contains pointers
to either direct or indirect blocks, with the distinction that
these blocks are ordinary Unix files, which may be located
on any number of drives. The Unix file system abstraction is
thus “encapsulated” by the larger abstraction defined by the
GFS, with quite different parameters of course—the block
size is a whopping 64 MB, over the 8K common in Unix
implementations. In designing the GFS, Google engineers
enjoyed a considerable advantage: the freedom to breach the
independence of the application and file system layers, a free-
dom that otherwise rarely obtains in software infrastructure
design:

“One thing that helped tremendously was that Google built
not only the file system but also all of the applications running
on top of it.While adjustments were continuallymade in GFS
to make it more accommodating to all the new use cases, the
applications themselves were also developed with the various
strengths and weaknesses of GFS in mind. . . .We could push
problems back and forth between the application space and
the file-system space, and then work out accommodations
between the two” (McKusick & Quinlan, 2009, p. 45).

Such accommodations are detailed in a discussion of
MapReduce, Google’s in-house parallel programming envi-
ronment: “We conserve network bandwidth by taking advan-
tage of the fact that the input data (managed by GFS) is
stored on the local disks of the machines that make up our
cluster. . . . When running large MapReduce operations on a
significant fraction of the workers in a cluster, most input
data is read locally and consumes no network bandwidth”
(Dean & Ghemawat, 2008, p. 110). That is, by breaching the
independence of the GFS layer, MapReduce can thwart
the potentially massive inefficiencies of a highly parallel
environment. Thus, even in the context ofGoogle’smassively
distributed data processing centers, the issues remain the
same: how to reconcile a powerful abstraction that provides
considerable convenience to programmers with the need to
optimize the spatial organization of the data for particular
types of processing.

The Network Stack

The network stack provides applications with services
ensuring the error-free transmission of structured bits from
one computer to another with the highest throughput (capac-
ity) and lowest latency (time in system) possible. This must
be accomplished in the context of significant material con-
straints: (a) signalsmust travel over physicalmedia—whether
air, copper wire, or fiber optic—each bringing different
characteristics to the job, with regard to susceptibility to
interference, dissipation, capacity, and cost; (b) the physical
infrastructure necessary to provide point-to-point commu-
nication is enormously costly, and consequently driven by
particular economic dynamics, including network effects,
and economies of scale and density; (c) these costs require
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that communication links to be shared among multiple users,
with the corresponding need for fair policies tomanage traffic
and its attendant inefficiencies.

Materials

Common media for digital communication include
twisted-pair (telephone wire), coaxial cable (cable televi-
sion), fiber optic, and radio waves. Like storage, a chief
characteristic of communication media is its unreliability,
including attenuation, the gradual weakening of the signal
due to the physical resistance of the media to electrical cur-
rent; and noise, the gradual distortion of the signal by a
wide variety of sources, including interference from other
wires, radio signals, the physical environment, etc. Because
attenuation and noise determine the capacity of the media
(Czajkowski, 1999), extensive measures must be deployed
to counter their effects, including signal amplifiers and cable
shielding.
Additionally, signal processing techniques help ensure

the correct transmission of data over an unreliable chan-
nel: modulation translates digital data into a form suitable
for transmission for a given physical medium, while error-
correcting codes use redundancy to protect sequences of bits
against noise. Different coding and modulation techniques
are appropriate given the specific noise characteristics of
the transmission channel and the amount of processing they
require. In both cases, the fundamental trade-off is accuracy
versus capacity, that is, the more protection against noise, the
less data the channel can carry, a trade-off first articulated by
Shannon (1949).

Physical Infrastructure

Worldwide, the “twisted pair” copper wires deployed for
the provision of telephony represents the most important
infrastructural investment for telecommunications providers,
millions of wires that connect individual dwellings to the
network, built over the course of the last century. A defining
engineering project of the early 21st century is the conversion
of this “voiceband” infrastructure, limited to the transmis-
sion of analog voice, to a “broadband” infrastructure, i.e.,
one capable of carrying significant amounts of digital infor-
mation. While the physical properties of optical fiber have
made it the preferred material for wireline broadband, the
enormous costs of infrastructural deployment to the level of
the “lastmile” ensure that the Internetwill continue to operate
over a mixture of physical materials:

“Althoughmany broadband architectures require optical fiber
to be brought at least some of the way towards the home
from the exchange, bringing the fiber increasingly closer to
the home become prohibitively expensive. The cost of fiber
deployment is dominated not by the material costs but by the
cost of civil works (i.e., the digging of the road/pavement and
the laying of the fiber)—a costs which can range between
£25 and in excess of £75 per metre, depending on the
circumstances” (Czajkowski, 1999, p. 127).

These costs have significant consequences: first, like
capacity on highways, the resource is largely inelastic. Unlike
processing power or storage, service providers cannot lay
additional cables on demand, and thus, must meet future
demand through overprovisioning. The widespread adoption
of this strategy by telcos at the height of the dot-com era
resulted in vast amounts of “dark fiber,” i.e., unused capacity;
second, the economies of scale and density that character-
ize such network infrastructures will continue to offer low
incentives for telecommunication providers to update their
infrastructure in rural areas; third, telcos have been highly
motivated to fund research for the development of encod-
ing and multiplexing schemes that maximizes the amount of
bits that could be transmitted over the existing infrastructure
(e.g., DSL over twisted pairs). These issues are not limited
to wireline communication: much of the wireless (cellular)
infrastructure was similarly developed for voice traffic and
thus required extensive investments from telcos to handle
broadband.

Sharing

As with other point-to-point networks (e.g., telephone,
mail, or road system), it is not feasible or cost-effective
to establish direct links between every computing device.
Instead, multilevel hierarchies of communication links are
used, whereby individual links connect to hubs (switch-
boards, mail sorting centers, highway interchanges, airports),
themselves connected to each other through shared, high-
capacity links. A central design imperative of network stack
is thus the efficient use of shared and scarce communication
links, given various characteristics of traffic: peak/off-peak
demand, data versus voice, quality of service requirements,
shape, etc.
A defining characteristic of the Internet is its reliance on

packet switching to maximize limited network resources:
first, in the context of computer-generated “bursty traffic,”
exhibiting substantial variations in intensity, breaking down
communications in small packets helps evenly spread usage
of a communication link amongmultiple users competing for
the resource; second, depending on network topology, packet
switching can help alleviate congestion by moving traffic
towards less congested links; finally, the network can adapt
in real time to significant changes in topology.Yet, as imple-
mented in the TCP/IP protocols, packet switching entails
significant drawbacks: no minimum latency may be guar-
anteed, a significant issue for applications such as streaming
media or telephony.

Cross-Layer Design

The network stack differs significantly from the proces-
sor and storage stack, insofar as it is the only case involving
the a-priori definition of the modular decomposition of the
stack and its imposition through standardization (Abbate,
2000; Zimmermann, 1980). For our purposes, the main ele-
ments are as follows: in the 1970s, with several experiments
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under way (including Arpanet), the merging of computing
and telecommunications was already on the horizon. In 1978,
ISO proposed an overall layering framework for network-
ing technologies, that is, a certain modular decomposition
of the network stack. The OSI (for Open Systems Intercon-
nection) model specified how a set of networking protocols
should fit together to form a complete system, in effect, a
meta-standard that incorporated other standards, and speci-
fied their interaction.Themodel listed seven layers tomanage
themovement of bits from physical media to applications and
back: physical, link, network, transport, session, presentation,
application. Each layer would provide for different types of
services (e.g., network provides routing, transport provides
reliable delivery), and for each layer,multiple standards could
be specified.
The mixed successes of OSI and of its top-down design

through large standardization bodies have often been con-
trasted with the nimble political structures that characterize
Internet governance (Russell, 2006).Yet, as Dave Clark, for-
mer chair of the Internet Architecture Board, explains, the
benefits of modularity themselves remain unquestioned:

“All good computer scientists worship the god of modu-
larity, since modularity brings many benefits, including the
all-powerful benefit of not having to understand all parts of
a problem at the same time in order to solve it. . . . The field
of network protocols is perhaps unique in that the ‘proper’
modularity has been handed down to us in the formof an inter-
national standard: the seven-layer referencemodel of network
protocols from the ISO” (Clark, 1996, p. IX).

However, this ‘proper’ modularity is currently under
stress, as it must adapt to the emergence of a new mate-
rial basis for networking, that of wireless communication.
Along with the dazzling possibilities of mobile comput-
ing comes significant engineering challenges: a much larger
range of channel conditions, new source of interference,
and devices that move more or less randomly through the
network infrastructure. And just like the case for wireline
communications, the infrastructure for wireless communica-
tions must be updated to account for the changing nature
of the data it carries—from analog voice to digital data.
The wireless infrastructure must account for the wide range
of applications pushing and pulling the data through the
radio spectrum, all with different Quality of Service (QoS)
needs, that is, with different degree of sensitivity to latency:
“Emerging networks must support various and changing
traffic types with their associated Quality-of-Service require-
ments aswell as networks thatmay have changing topologies.
The problem of various traffic types is typified in newly
defined 3G networks. These networks must support multi-
media traffic with manifold delay, error-rate, and bandwidth
needs” (Rappaport, Annamalai, Buehrer, & Tranter, 2002,
p. 158). Yet another emerging wireless infrastructure, that
of sensor networks, must compose with the very low power
consumption requirements of minuscule wireless devices.
Thus, the very different nature of the physical layer, along

with the very different needs which wireless media must

satisfy, have led to persistent calls for what amounts to
the ultimate taboo in network architecture, breaching the
independence of theOSI layers through “cross-layer design”:

“In order to meet the challenges of ubiquitous wireless
access, network functions (i.e., the various OSI layers) must
be considered together when designing the network. QoS
requirements that can and will vary according to application
will force the network layer to account for the physical-
layer design when optimizing network throughput. Further,
different applications are better served by different optimiza-
tions. This leads to a design methodology that blurs the
lines between layers and attempts to optimize across layer
functionality” (Rappaport et al., 2002, p. 159).

Unsurprisingly, from the onset, proposals for cross-layer
design have raised no small amount of controversy. The first
issue is, quite simply, that modularity has proven such an
successful design strategy in computing precisely because
it circumscribes the range of interactions between modules
(layers). Cross-layer optimization is not different to using
“goto” statements, as Kawadia and Kumar (2005) argue,
“Does one then get unstructured spaghetti-like code that is
hard to maintain?” The wonderful benefits of breaking down
complex systems into smaller, more manageable, parts are
no longer available:

“Once the layering is broken, the luxury of designing a pro-
tocol in isolation is lost, and the effect of any single design
choice on the whole system needs to be considered. . . . Com-
pounding this is the fact that some interactions are not easily
foreseen. Cross-layer design can thus potentially work at
cross-purposes; the ‘law of unintended consequences’ can
take over if one is not careful, and a negative effect on system
performance is possible” (Kawadia &Kumar, 2005, pp. 3–4).

This is not simply a hypothetical situation: Kawadia and
Kumar are able to exhibit several examples where pro-
posed cross-layer designs of the MAC and physical layer
would result in undesirable interactions with the network
layer, resulting in net performance losses under certain con-
ditions. Furthermore, the argument that cross-layer design
will improve performance thus very much depends on what
dimension of performance is emphasized. As they underline,
this is always the fundamental trade-off of modular design:

“On the other hand, taking an architectural shortcut can often
lead to a performance gain. Thus, there is always a fun-
damental tension between performance and architecture, a
temptation to violate the architecture. However, architecture
can and should be regarded as performance optimization,
although over a longer time horizon. An architecture that
allows massive proliferation can lead to very low per-unit
cost for a given performance. More properly, therefore, the
tension can be ascribed to realizing short-termvs. longer-term
gain. In the particular case of wireless networks, which may
be on the cusp of massive proliferation, our contention is that
the longer-term view of architecture is paramount” (Kawadia
& Kumar, 2005, p. 4).

That is, layering enables stable forms of market segmen-
tation (and the resulting economies of scale) to take hold, and
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thus, the “very low per-unit cost” that has been a major ele-
ment of the success of the telecommunication industry. Thus,
while the rationale for cross-layer design is understandable,
given the newmaterial basis ofwireless communications, it is
a recipe for economic (and political) instability, at a particu-
larly sensitive time: “it well behooves us to adopt a cautionary
approach to cross-layer design at a critical time in the his-
tory of wireless networks when they may well be on the
cusp of massive proliferation that is the objective of us all”
(Kawadia & Kumar, 2005, p. 11).

Discussion

The preceding historical analysis of the evolution of the
three resource stacks demonstrates that the materiality of
digital information can be understood as the composition
of two different sets of constraints: those due to the physi-
cal characteristics of the limited resources of computation;
and those due to the adoption of modularity as a means
of mediating between these resources and the applications
that manipulate this information. At their most fundamental,
each of these resources deals with bits as physical quanti-
ties, whether magnetic polarities, electric voltages, or radio
waves. These physical quantities are first abstracted as bits,
and circulated up and down the resource stacks, the lay-
ered chains of modules that obtain between applications and
resources.
The magic of modularity, its ability to decouple functional

specification from implementation, provides enormous free-
dom and flexibility to the management, coordination, and
evolution of complex technical systems. It provides program-
mers with stable interfaces to system resources in the face
of continuously evolving hardware. However, in abstracting
from the noise that different materials bring to the digi-
tal abstraction, from specific implementations of physical
resources, from their distribution in space, and from their
sharing among multiple users, such decoupling necessarily
involve efficiency trade-offs.
These trade-offs must be continuously negotiated with

respect to the fundamental drive of systems design, max-
imizing the use of systems resources in service of greater
efficiency. In particular, this drive continuously works to
undermine the freedom afforded by modular decomposition,
for example, through attempts at co-design of indepen-
dent layers. Furthermore, changes to the material resources
of computing (e.g., wireline to wireless) necessarily ripple
through the layers of the stacks, requiring renegotiation of
previously established trade-offs, either through the market
or the standardization process.5 The computing infrastructure
thus evolves through the conflicting pressures of forces that
encourage a certain kind of persistence, and those that make
possible certain kinds of moves.

5An excellent account of the techno-politics of standardization is vonBurg
(2001).

Persistence

Several characteristics of modularity act as conservative
forces against the evolving material basis of computing. The
chief force is inherent to modular decomposition: while it
provides for flexible decoupling of abstractions from imple-
mentations, the modular decomposition itself is extremely
rigid, since any change involves redefining the relationship
of a minimum of two layers. Parkas (1984) foresaw as much
when he suggested that “only very unlikely changes should
require changes in the interfaces of widely used modules.”
Furthermore, particular modular decompositions become

embodied in the hardware, software, and institutional infras-
tructure (e.g., standards, technical training) of computing.
Such materialization of particular abstractions provides the
long-term stability necessary for economies of scale to take
hold. It is such economic advantages that have enabled von
Neumannmachines to provide the best processing power/cost
ratio for the last 60 years—the closest we have to eternity
in the world of computing. Emergent forms of materiality
threaten existing architectures with economic instability, as
stakeholders seek adjustments to the stack to improve its
efficiency in favorable ways (e.g., cross-layer design). At
the same time, the high costs of infrastructural investments
ensure that computing resources are repurposed rather than
merely replaced.The resource stacksmust thus composewith
different types of materials (parallel and nonparallel archi-
tectures, twisted pair and fiber, local and remote storage)
with resulting trade-offs and inefficiencies. Thus, the solu-
tions developed in a particular moment of technical history
tend to persist and accrete.
Thus, in contrast to the perception of computing as mov-

ing at a furious pace of technical evolution, its infrastructure
evolves very slowly. Because of the need to maintain back-
ward compatibility, the incorporation of major changes in
the material basis of computing—e.g., multi-core process-
ing, cloud-based, and wireless computing—proceeds con-
servatively through mutation and hybridization, rather than
outright break with the past. For example, rather than rein-
vent the abstractions that govern processing to take advantage
of the new possibilities offered by server farms, Amazon’s
EC2 cloud service reproduces virtual von Neumann archi-
tectures, so that consumers can run existing applications and
commercial software.

Moves

In spite of these conservative forces, the resource stacks
are in a constant state of (more or less pronounced) flux. The
fundamental pressure for change is exerted by the drive for
greater efficiency. While we are familiar with efficiency as
achieved by material science (greater storage density, greater
communication speed, greater clocking speed), less familiar
are the kind of moves within the stack that also result in
efficiency gains.
The most common strategy is to breach the indepen-

dence of two adjacent layers through co-design, as illustrated
above (co-design of processors and programming language
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abstractions, Google’s co-design of GFS and MapReduce,
cross-layer design for wireless networks). Another move,
encapsulation, consists of wrapping the interface of a module
into another layer—e.g., Google’s GFS and the Unix file sys-
tem. Because it reuses the existing file system interface, the
GFSwill also inherit all of its built-in inefficiencies.These are
compensated, however, by the benefits of increased elasticity
of the resource, low costs of the components, and co-design of
the file and application layer. Inserting new layers in the stack
can prove extremely difficult. For the last quarter of a century,
the computer science community has attempted, with limited
success, to define a standard for a layer (CORBA) that would
enable applications to transparently communicate with other
applications and enable more distributed forms of processing
(Henning, 2006).
The most powerful move remains the imposition of an

a-priori modular decomposition before protocols solidify in
both hardware and institutions, as attempted by ISO with
the OSI model. But the OSI model already conflicted with
another architecture, that of TCP/IP, illustrating that when
it comes to infrastructure, there is no such thing as a clean
slate. The clean slate is precisely what computer scientists
often fantasize about when faced with infrastructural change:
“Given an excuse to reinvent the whole software/hardware
stack, this opportunity is also a once-in-a career chance
to fix other weaknesses in computing that have accumu-
lated over the decades like barnacles on the hull of an old
ship” (Asanovic et al., 2009, p. 3). Yet, as Ciborra (2000,
2002), Star and Ruhleder (1996), and the preceding sec-
tions have suggested, infrastructural change proceeds just as
much through improvisation, bricolage, and drift, than it does
through planification and control.
These moves, this persistence, provide essential analytical

tools for strategic planning, for understanding the complex
positioning of market players through vertical and horizontal
integration, standards, and interoperability. This is particu-
larly true at this moment in technical history, as networks
migrate towards architectures where fundamental computing
resources—processing, storage, communication—are exten-
sively distributed and shared, and their power leveraged for
an ever-increasing range of societal functions.

Conclusion

What kind of work does a theory of digital materiality
perform? One can envision the difficulties that would arise
in attempting to account for architecture without a working
concept of the tensile strength of steel, of the durability of
concrete, of the density of wood. Indeed, that these mate-
rials differ in their physical characteristics registers on the
entire ecology of the field, from construction methods to
economics, design traditions, professional training, cultural
symbolism, etc., and nomeaningful analysis can ignore these
differences. Furthermore, there exists both a precise technical
understanding of these differences, appropriate to the expert
communities concerned with these issues, and a lay intuition
that informs everyday discourse. Yet we today have neither

technical language nor intuition for something akin to the ten-
sility, durability, or density of computing resources. Without
a basic understanding of thematerial constraints under which
computing systems operate, essential dynamics that animate
the built environment of the virtual will remain invisible and
unaccounted for.
Furthermore, a fundamental shift in the contemporary

social sciences has been to increasingly ground cognition,
identity, subjectivity, and collective action in the body and
its material environment, rather than solely in the brain
(Malafouris & Renfrew, 2010). The Cartesian heritage of
philosophies of mind has made it difficult to account for
the fact that “as embodied agents, able to move and act
in a persisting material world, we are demonstrably able
to profit from a variety of strategies that make the most
of bio-external sources of order and information” (Clark,
2010, p. 23). Such a perspective yields powerful insights:
in Science and Technology Studies for example, Donald
MacKenzie (2006) has famously argued how financial mod-
els (e.g., Black-Scholes option pricing) “perform” markets,
through computerized trading systems, but also through
the mundane technology of paper—“sheets which floors
traders could carry around, often tightly wound cylindri-
cally . . . so that a quick squint would reveal the relevant
prices.” Even more the point, in a perceptive analysis of
video codecs, the compression algorithms that power the
media culture of the Internet, Adrian Mackenzie argues
the material constraints of computing intimately register
within our very perceptual systems:

“Eyes and ears do not have universal, timeless physiological
properties. They have media-historical habits. Electronically
mediated visual culture shapes eyes and ears, and creates
perceptual habits at many levels. For instance, the con-
ventions of the rectangular 4:3 ratio TV screen, the 16:9
ratio cinema screen, the number of scan lines, or the colour
models of PAL/NTSC television broadcasts go deep into
visual habits. Sensations of colour, texture, brightness and
level of detail all feed into habits of viewing. The video
codecs behind DVDs, High Definition Television, mobileTV
for 3G cellular telephones, RealPlayer, or satellite digital
video broadcasts attempts to take those expectations into
account and meld them with the limited channel capaci-
ties of networks, broadcast spectrum or cables” (Mackenzie,
2010, p. 145).

Indeed, without modes of analysis grounded in the stuff of
computing, we shall find ourselves in the awkward situation
of resorting to theories that account for embodied subjects
situated and interacting in environments curiously lacking
specific material constraints.
Conversely, the analysis proposed here provides a picture

of computing dramatically at odds with that conveyed by the
trope of immateriality. Indeed, it is only recently that com-
puting has been approached as “something having a history,
rather than just being permanently in a state of improve-
ment” (Fuller, 2008, p. 7). As Haigh (2009) notes, “software
tools encapsulate craft knowledge, working practices, and
cultural assumptions. . . . these encapsulated qualities are
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reproduced with each new software revision, often enduring
for decades” (p. 7). Indeed, this paper has shown how
abstractions, embedded in software, hardware, and institu-
tions, endure across decades, acting as conservative forces
on infrastructure evolution.Yet much of the historical dialec-
tic between abstraction and implementation is absent from
computer scientists’ own accounts of their discipline. As
Blaauw andBrooks (1997) remark in theirmonumental study
of computer architecture, “when reading the professional
paper describing the architecture of a new machine, it is
often difficult to discern the real design dilemmas, com-
promises, and struggles behind the smooth, after-the-fact
description” (p. 7).
Yet these dilemmas, these compromises, these struggles

will increasingly matter, as the software infrastructure comes
to mediate a breathtaking proportion of social relations. As
Miller (2005) notes, objects are important “precisely because
we do not ‘see’ them. The less we are aware of them, themore
powerfully they can determine our expectations by setting the
scene and ensuring normative behavior, without being open
to challenge. They determine what takes place to the extent
that we are unconscious of their capacity to do so” (p. 5). The
inability for a technical field to retrace the historical path of
its most important and durable contributions has important
consequences for its ability to critically reflect on its own
evolution and the political work inherent in infrastructural
design.6

The need for such critical reflection is particularly timely
at this juncture in the evolution of computing. The current
move towards mobile and cloud computing will introduce
fundamentally new economic mechanisms for the valuation
of the material resources of computing.7 In turn, the alloca-
tion, distribution, and metering of these resources, and the
design of the infrastructure that mediates them will become
an increasingly visible and contested phenomena. The ana-
lytical framework in this paper provides means to make the
infrastructural work of computingmore visible, so that it may
be engaged with by a broader range of stakeholders.
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