Interaction Design WikiEmbodied Interaction

Embodied Interaction HS2021

TOPIC: Embodied Fabrication 

Instructors:

Dr Joëlle Bitton
Verena Ziegler
Aurelian Ammon

Guest contributions:
Laetitia Frost & Naomi Bulliard, Centre for Sustainable Fashion, London College of Fashion, UAL
Guests bios:

Naomi Bulliard

Naomi is linguist and multilingual educator with expertise in participatory design, cultures of sustainability and intercultural collaborations. She has worked in academic and professional roles in education across locations and generations, and has created professional development courses and awards in intercultural and inclusive working practices.  
As Head of Strategy at Centre for Sustainable Fashion, one of University of the Arts’ Research Centres, Naomi oversees strategic activities across Research, Education and Knowledge Exchange, and the development of sustainability literacy and strategies. She has worked on a number of international cross-sector collaborations centred around experiential learning, displacement, diversity and inclusion, and design for sustainability.  
Laetitia Frost
Laetitia is a multi-technique textile designer whose practice explores the tension between technical challenges and creativity in sustainable design for textiles. Laetitia trained as a textile designer at ENSAD Paris before working as a freelance textile designer for fashion, interiors and consulting in eco-design. She carried out her PhD research on the subject of textile design for disassembly in relation to recycling challenges at the Centre for Circular Design at Chelsea College of Arts. She is currently working as a postdoctoral researcher on two UAL research projects: the Business of Fashion Textiles and Technology (BFTT) project with the Centre for Sustainable Fashion, and HEREWEAR with the Centre for Circular Design.
 

Office hours by appointment

The course runs from 16.11.21 - 24.12.21, from 9.00 - 17.00. See Timetable for more detailed hours.

Overview and Objectives

The course proposes an examination and speculation of technologies as they related to Embodied Interaction (ie. mobile computing, wearable interfaces, location-based interactions and digital fabrication...).
This examination covers societal, ethical and social influences.


This year, the course puts an emphasis on 'Embodied Fabrication', where digital fabrication is approached from the perspective of embodiment.
With more flexible and more accessible modes of fabrication, and with social aspects of fabrication emerging in recent years, we have the opportunity to investigate ways that we can transform our physical selves and environments.

During this module, we'll uncover some of these possibilities by designing and informing our bodily environment with personal data. By group work, you'll propose such form of body extension.
Design factors may include:
• material intimacy
• processes of fabrication / physical interactions that impact digital fabrication
• data tracking & mapping 
• wearability

• performative aspects

Your work will encounter some of these research questions:

Expectations and Gradings

Grades will be based on group presentations and exercises, class participation, documentation (journal) and final work. 
Contributing to constructive group feedback is an essential aspect of class participation. 
Regular attendance is required. Two or more unexcused absences will affect the final grade. Arriving late on more than one occasion will also affect the grade.

Final work 50% 

Group exercises/presentations 20% 

Journal Documentation 20% 

Class participation 10% 

Any assignment that remains unfulfilled receives a failing grade.  

Deliverables 

Course outline  

Student Teams & Journals 

Journals Readings

Embodied Interaction: Exploring the Foundations of a New Approach to HCI

http://acadia.org/papers

Creating physical visualizations with makervis

Supporting the design and fabrication of physical visualizations

https://issuu.com/pabloherrera/docs/algorithmicmodelling

Related Projects (small selection)

Visualisation

Magnetic Movie

Technorama Building (analog wind visualization)

Experimental study of apparent behavior

Study for Fifteen Points

Parametric design and Digital Fabrication for Inflatables


Fashion context

https://www.pinterest.nz/pin/336573772141747181/

http://behnazfarahi.com/bodyscape/

https://www.pinterest.nz/pin/564779609510964664/

https://www.pinterest.nz/pin/563794447076862696/

http://www.iaacblog.com/programs/miura-ori-skin/

https://www.pinterest.nz/pin/288511919858286303/

https://www.media.mit.edu/projects/rottlace/overview/

Tools and Software

Tools available: 3D printer (Ultimaker, Delta, Cetus, Single-line), laser cutter, foam cutter, wire bender, photogrammetry....

Additional Tutorials & References

Rhino and Grasshopper basics workshop 

Shiftr.io Pocket

Kinect & Skanect

Skanect to Rhino

Rhino

Grasshopper

Arduino wireless sensor kit

Processing

Exercises

1. http://www.deprocess.org/tutorials/grasshopper-data-trees/

2. link>

3. https://issuu.com/pabloherrera/docs/algorithmicmodelling (Chapter 4 - Tranformation)


4. link>

5. link>

6a. link>

6b. link>


Examples Scan Data / Rhino

Example populating mesh / Grasshopper

Example using shiftr-io / Grasshopper

Textile laboratory ZHdK

https://intern.zhdk.ch/?materialbezug

https://intern.zhdk.ch/?wslnews



Presentation Verena Ziegler "body extensions"

See