Image credit: Andy Kirk, Andreas Fürer, Sonjoi Nielsen 2019
Lecturers: Luke Franzke & Florian Bruggisser
Course Overview
In this course, we will look at physical computing as a method of interaction design. Our definition of Physical Computing refers to the use of hardware and software to make interactive objects that can respond to events in the real world. These events may be general knowledge about the environment (temperature, brightness, etc.) or user interactions (keystroke, motion, speech, etc.). These devices might respond with direct feedback through displays or actuators, or by performing actions in a digital environment. The challenge of physical computing is to make the interface between human and machine as simple and intuitive as possible by taking physical human abilities and habits into account.
Course Goals
The students learn how to handle hardware and software in order to prototype their own ideas. The students develop an understanding of the characteristics of physical interactions and demonstrate them through functional prototypes. From a technical perspective, students learn the basics of electronics, microcontroller programming (Arduino), working with digital and analogue sensors and actuators.
Course Structure
The course takes place in two separate blocks: Physical Computing Basics in the first two weeks and the Main Project in the last two weeks. In the first block, students will work individually through the introductory topics, while the Main Project is in groups of two to three students.
Personal Material
Please bring your personal computer to computer and project box for all classes and zoom sessions. If you have a newer MacBook with USB C, bring an adapter to work with standard USB cables. A personal notebook is also recommended.
Expectations and Grading
Grades will be based on group presentations, class participation, home assignments, documentation and final work. An attendance of min. 80% is required to pass the course.
- Individual Documentation (weeks 1 and 2)
- Group Work (weeks 3 and 4)
Individual Work (40%)
- Workbook documentation of all exercises and minor projects from weeks 1 and 2 .Document every circuit you built (or attempted to build) with a photo. Include your code when appropriate, a drawn schematic of each circuit and include notes/observations. and Bits and Atoms III.
- Presentation of Minor Project.
Group Work (60%)
- Final Prototype of Object
- Final Presentation
- Standard IAD Documentation
- Video (Making of, Final Prototype)
- Image selection
- Short Documentation (PDF)
Final Presentation notes:
- 5 minutes for presentation, and 5 minutes for feedback and discussion
- Show the process that brought you to this outcome
- Live demonstration of your project
References and Links
...
- Project Briefs 2019Brief 2020
- Project box 2020
- Exercises
- Course Resources
- Project References
- 2020
- Physical Computing Literature ReferencesResources
- Physical Computing Lab - Sensors
Topic
...
2020:
...
Empathetic Machines:
...
Distinctly non-human forms can be highly evocative of human qualities, and basic geometric forms can convey agency and complex behaviours through motion alone (Heider and Simmel 1944). For this reason, we will focus on primitive forms with expressive behaviour through motion, using simple electromechanical actuatorselectromechanical actuators, in combination with sensors and microcontrollers.
2019 2020 Topics Readings
Schedule
Morning: 09:00 - 12:00, Afternoon: 13:30 - 17:00
W1 | Tuesday |
---|
06.10 | Wednesday |
---|
Thursday 19.09 (4.K15)
Friday 20.09 (4.K15)
Morning
- Pulse Width Modulation
- Analog Input
- Analog Sensors
- Smoothing
(LF)
- Transistors
- Motors, Solenoids
Servo Motors
(LF)
- Digital Components
- Digital Interfaces
- I2C, SPI, UART
- Neo Pixel
- Ultra Sonic Distance Sensor
(FB)
Afternoon
(LF FB)
- Parallel/Series Circuits
- Capacitors
- Soldering
(LF)
- ICs, datasheets
- H-Bridges
- Arduino & Processing
- Serial Communication
(FB)
- Minor Project Start
- Repetition Time
(14:00 Student Essay Feedback with Martin and Joëlle Individual)
(LF, FB)
W2
Tuesday 24.09 (4.K15)
Wednesday 25.09 (4.K15)
Thursday 26.09 (4.K15)
Friday 27.09 (4.K15)
Morning
- Neo Pixels
Protoboards
EAGLE CAD
(LF)
Networking
(FB)
Individual Minor Project
Afternoon
PCB Milling
(LF)
Individual Minor Project
Individual Minor Project
13:30 Presentation.
14:30 Cleanup and documentation
W3
Wednesday 23.10 (5.D02)
Thursday 24.10 (5.D02)
Friday 25.10 (5.D02)
Morning
Main Project Kickoff
Robotics input (LF)
Main Project Ideation
Computer Vision Input
(FB)
13:30. Guest Lecture: James Bern from ETH Computational Robotics Lab (5.T09)
15:00 Topic Presentation
Soldering 2 (LF)
EAGLE CAD & PCB Milling (LF)
13:30 Mentoring (LF & FB)
16:30. Guest Lecture: Maria Smigielska (5.T04)
W4
Tuesday 29.10 (Atelier)
Wednesday 30.10 (Atelier)
Thursday 31.10 (Atelier)
Friday 01.11 (Atelier)
Morning
Prototyping / Mentoring (LF)
Prototyping
Final Build
Final Build
Afternoon
Prototyping / Mentoring (LF)
Meeting Jürgen and Karmen 14:00 - 15:00 (5.D02).
Prototyping / Mentoring
Final Build
Final Build
Final Presentation 14:30 (4k.15)
Documentation and feedback 15:15 - 17:0007.10 | Thursday 08.10 | Friday 09.10 |
---|---|---|
Morning |
References:
Getting Started with Arduino 3rd Edition: p.37-40
Make: Electronics 2nd edition: p.1-40
| (ZT 4.T30) Lecture: | (remote) Individual Minor Project (sensing) | (remote) Individual Minor Project (sensing) | |
Afternoon | (ZT 3.K13) Lecture:
| (ZT 4.T30) Lecture: Individual Minor Project introduction 15:00 Bits and Atoms (zoom) Guest Lecturer: Moritz Kemper of Phoenix Design | (remote) Individual Minor Project (sensing) | (remote) Individual Minor Project (sensing) Optional: Visit HEK exhibition in Basel |
W2 | Tuesday 13.10 | Wednesday 14.10 | Thursday 15.10 | Friday 16.10 |
---|---|---|---|---|
Morning | (4.T06) (LF, FB) Exchange round on Individual Minor Project Lecture: (FB)
| (4.K14) (LF) Lecture:
| (remote) Individual Minor Project (inputs and outputs) | (4.T33) Individual Minor Project Presentation (9:00 - 10:00) Cleanup and documentation |
Afternoon | (4.T06) (FB) Lecture:
| (5.T04) Lecture:
15:00 Bits and Atoms (data vis) | (remote) Individual Minor Project (inputs and outputs) | (4.T33) Main Project Kickoff (14:00 - 15:00) Group forming and ideation |
W3 | Tuesday 20.10 | Wednesday 21.10 | Thursday 22.10 | Friday 23.10 |
Morning | (5.T04) Design Concept Presentation Group Mentoring | (5.T04) Lecture: Networking & Computer Vision | (remote) Prototyping | (remote) Prototyping |
Afternoon | Prototyping (remote) | Prototyping 15:00 Bits and Atoms (data vis) | (remote) Prototyping | (Atelier) Mentoring |
W4 | Tuesday 27.10 | Wednesday 28.10 | Thursday 29.10 | Friday 30.10 |
Morning | (Atelier) Mentoring | (remote) Prototyping | (5.K07) Setup Final Presentation | (5.K07) Documentation Feedback via Zoom (10:00) |
Afternoon | (Atelier) Mentoring | (Atelier) Mentoring | (5.K07) 13:00 Final Presentation 15:00 Bits and Atoms (data vis) | (5.K07) Documentation Returning project boxes |
Optional Inputs
Groups
- Group 1
- Gian-Carlo
- Aathmigan
- Miriam Mai
- Andreas
- Group 2
- Celina
- Alec
- Ramona
- Nicola
- Group 3
- Kimon
- Daniela
- Baran
- Group 4
- Nemo
- Alessia
- David
- Group 5
- Sonia
- Kilian
- Paulina