Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 32 Next »

Lecturers: Luke Franzke & Florian Bruggisser

Course Overview

In this course, we will look at physical computing as a method of interaction design. Our definition of Physical Computing refers to the use of hardware and software to make interactive objects that can respond to events in the real world. These events may be general knowledge about the environment (temperature, brightness, etc.) or user interactions (keystroke, motion, speech, etc.). These devices might respond with direct feedback through displays or actuators, or by performing actions in a digital environment. The challenge of physical computing is to make the interface between human and machine as simple and intuitive as possible by taking physical human abilities and habits into account.

Course Goals

The students learn how to handle hardware and software in order to prototype their own ideas. The students develop an understanding of the characteristics of physical interactions and demonstrate them through functional prototypes. From a technical perspective, students learn the basics of electronics, microcontroller programming (Arduino), working with digital and analogue sensors and actuators.

Course Structure

The course takes place in two separate blocks: Physical Computing Basics in the first two weeks and the Main Project in the last two weeks. Int the first block students will work individually through the introductory topics, while the Main Project is in groups of two to three students. 

Topic 2019: Empathetic Machines: 

Topic 2019: Empathetic Machines:

Can interactions between human and machine be more powerful if we can empathise with the device because of it's a human-like behaviour? We are social animals, and a large portion of our brain is dedicated to social tasks, from recognising emotions to predicting the thoughts and intentions of people around us. It, therefore, makes sense that we utilise these capabilities when designing interactions. 

But how might everyday interactive devices be improved by anthropomorphic characteristics? Would we be more likely to partake in sustainable consumption of electronics if devices were more sympathetic? This year's Physical Computing project will attempt to answer some of these questions, while physically prototyping interactive devices with empathetic qualities and anthropomorphic behaviours. Will will focus on the use of simple sensors and electromechanical outputs to achieve these results. 

There have been numerous attempts to make humanoid robots (both in fiction and reality), which inevitably lead to the uncanny valley phenomena. Yet, distinctly non-human forms can be highly evocative of human qualities. Simple geometric forms can convey agency and complex behaviours through motion alone (Heider and Simmel 1944). For this reason, we will focus on human-like behaviour being conveyed through motion, rather than form.

Topics Readings:

https://dl.acm.org/citation.cfm?id=2980481

https://www.researchgate.net/publication/23547395_Is_That_Car_Smiling_at_Me_Schema_Congruity_as_a_Basis_for_Evaluating_Anthropomorphized_Products

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.297&rep=rep1&type=pdf

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=812787

https://www.bbvaopenmind.com/en/humanities/sociology/in-search-of-the-new-human-machine-empathy/

https://link.springer.com/chapter/10.1007/978-3-319-23832-6_15


Expectations and Grading

Grades will be based on group presentations, class participation, home assignments, documentation and final work. An attendance of min. 80% is required to pass the course.

  • Individual Documentation (weeks 1 and 2)
  • Group Work (weeks 3 and 4)

Individual Work (40%) 

  1. Workbook documentation of all exercises and minor projects from weeks 1 and 2.
  2. Document every circuit you built (or attempted to build) with a photo. Include your code when appropriate, a drawn schematic of each circuit and include notes.  
  3. Presentation of Minor Project

Group Work (60%)

  1. Final Prototype of Object
  2. Final Presentation
  3. Standard IAD Documentation 
    • Video (Making of, Final Prototype)
    • Image selection
    • Short Documentation (PDF)

Final Presentation notes:

  • 5 minutes for presentation, and 5 minutes for feedback and discussion
  • Live demonstration of your project 
  • Explain the process and the thinking that brought you to this outcome 

Schedule

Morning: 09:00 - 12:00,  Afternoon: 13:30 - 17:00

W1

Tuesday 17.09 (4.K15)

Wednesday 18.09 (4.K15)

Thursday 19.09 (4.K15)

Friday 20.09 (4.K15)

Morning


Kick-off Lecture
Electricity Basics
Resistors, Ohms Law, Basic Units  LED's, Power, 

(LF FB)

References:

Getting Started with Arduino 3rd Edition: p.37-40

Make: Electronics 2nd edition: p.1-40

Electronic Basics (sparkfun)

Pulse Width Modulation

Analog Input
Analog Sensors 
Smoothing 
(LF)

Transistors
Motors, Solenoids
Servo Motors
(LF)

Digital Components
Digital Interfaces
I2C, SPI, UART
Neo Pixel, Ultra Sonic Distance Sensor
(FB)

Afternoon


Schematics, Multimeters, Voltage Divider, Digital Output
Digital InputDebouncing

(LF FB)

Parallel/Series Circuits, Capacitors,
(LF)

ICs, datasheets, H-Bridges

Arduino & Processing
Serial Communication

(FB)

Soldering

Minor Project Start 

Repetition Time

(LF, FB)

W2

Tuesday 24.09 (4.K15)

Wednesday 25.09 (4.K15)

Thursday 26.09 (4.K15)

Friday 27.09 (4.K15)

Morning


Protoboards

EAGLE CAD

(LF)

Networking

(FB)

Individual Minor Project

Individual Minor Project

Afternoon


PCB Milling
Individual Minor Project


Individual Minor Project

Individual Minor Project

Presentation, cleanup and documentation

W3


Wednesday 23.10 (5.D02)

Thursday 24.10 (5.D02)

Friday 25.10 (5.D02)

Morning 



Main Project Kickoff

Main Project Ideation 

Computer Vision Input 

(FB)

Prototyping
Afternoon


Robotics input

Ideation and Prototyping

Prototyping

Prototyping

W4

Tuesday 29.10 (5.D02)

Wednesday 30.10 (5.D02)

Thursday 31.10 (5.D02)

Friday 01.11 (5.D02)

Morning 


Prototyping / Mentoring

Prototyping 

Final Build

Final Build

Afternoon


Prototyping / Mentoring

Prototyping / Mentoring

Final Build

Final Build


W5Tuesday 05.11


MorningSetup Final Presentation 


Afternoon

Final Presentation 12:00 - 13:00 

Documentation and feedback 13:30 - 17:00