(Extra) Curve Reactor

This example uses a curve as the reactor object. The curve is subdivided into several points, and those points used in the similar way as the previous reactor examples.

int NDIVS = 100; // # of subdivisions, higher is more accurate, but slower, and vice versa
PVector [] cps; // curve controll points
int gridWidth = 30; 
int gridHeight = 30; 
float shapeWidth = 19; 
float shapeHeight = 19; 
float reactorScaler = .006;

void setup() {
  size(500,500);
  smooth();

  cps = new PVector[4];
  for (int i=0; i<4; i++) {
    cps[i] = new PVector();
  }
  cps[0].x = width+300;
  cps[0].y = -500;
  cps[1].x= 50;
  cps[1].y= 50;
  cps[2].x= width-50;
  cps[2].y= height-50;
  cps[3].x= -500;
  cps[3].y= height+300;
}
 
void draw() {
  background(255);
  drawGeometry();
}
 
void drawGeometry() {
  stroke(255,0,0);
  noFill();
  curve(cps[0].x,cps[0].y, cps[1].x,cps[1].y, cps[2].x,cps[2].y, cps[3].x,cps[3].y);
  fill(0);
  noStroke();
for(int i = 0; i<gridWidth; i++ ) {
      for(int j = 0; j<gridHeight; j++ ) {
         
         
          PVector myPos = new PVector(i*shapeWidth, j*shapeHeight);
          PVector cpt = ClosestPointOnCatmullRom(cps,myPos,NDIVS);
          float reactorDistance = dist(cpt.x, cpt.y, myPos.x, myPos.y);
          float scaler = reactorDistance*reactorScaler;
          //translate(posX, posY);
     
          ellipse(myPos.x, myPos.y, shapeWidth*scaler, shapeHeight*scaler);
      };
  };

}
 

 // see http://davebollinger.org/category/code/
/**
 * Returns the closest point on a catmull-rom curve relative to a search location.
 * This is only an approximation, by subdividing the curve a given number of times.
 * More subdivisions gives a better approximation but takes longer, and vice versa.
 * No concern is given to handling multiple equidistant points on the curve - the
 *   first encountered equidistant point on the subdivided curve is returned.
 *
 * @param cps    array of four PVectors that define the control points of the curve
 * @param pt     the search-from location
 * @param ndivs  how many segments to subdivide the curve into
 * @returns      PVector containing closest subdivided point on curve
 */
PVector ClosestPointOnCatmullRom(PVector [] cps, PVector pt, int steps) {
  PVector result = new PVector();
  float bestDistanceSquared = 0;
  float bestT = 0;
  for (int i=0; i<=steps; i++) {
    float t = (float)(i) / (float)(steps);
    float x = curvePoint(cps[0].x,cps[1].x,cps[2].x,cps[3].x,t);
    float y = curvePoint(cps[0].y,cps[1].y,cps[2].y,cps[3].y,t);
    float dissq = dist(pt.x, pt.y, x, y);
    if (i==0 || dissq < bestDistanceSquared) {
      bestDistanceSquared = dissq;
      bestT = t;
      result.set(x,y,0);
    }
  }
  return result;
}

Related pages